

Ultra-low Power Sub-1Ghz Wireless Transceiver SoC

MCU Feature

- CPU core
 - 32-bit ARM Cortex-M4 + FPU, single-cycle hardware multiplication and division instruction, support DSP instruction and MPU
 - Built-in 2KB instruction Cache, which support Flash acceleration unit to execute program 0 wait
 - Run up to 64MHz, 80DMIPS

Encrypted memory

- Up to 128KByte of embedded Flash memory, support encrypted storage, multi-user partition management and data protection, hardware ECC check, 100,000 cycling and 10 years data retention.
- 24KByte of SRAM, including 16Kbyte SRAM1(In STOP2 mode can be configured to retention) and 8 Kbyte SRAM2(In STANDBY and STOP2 mode can be configured to retention), support hardware parity check

• Low power management

- STANDBY mode: 1.5uA, all backup registers retention, IO retention, optional RTC Run, 8KByte SRAM2 retention, fast wake up
- STOP2 mode: 3uA, RTC Run, 8KByte SRAM2 retention, CPU register retention, IO retention, fast wake up
- RUN mode: 60 uA/MHz@64MHz
- LPRUN mode: PLL off, MSI as the system master clock, MR off, LPR on, USB/CAN/SAC power off, other peripherals are optional

• Segment LCD display driver, support up to 176 segments (4x44) or 320 segments(8x40)

- High performance analog interface
 - 1x12bit 4.5Msps ADC, multiple precision configurable, sampling rate up to 8Msps in 6-bit mode, up to 16 external single-ended input channels, support differential mode
 - 2x rail-to-rail operational amplifiers with built-in maximum 32x programmable gain amplifier
 - 2x high-speed analog comparators, built-in 64-level adjustable comparison reference, COMP1 support working in STOP2 mode

- 1x 12bit DAC, sampling rate 1Msps
- Internal 2.048V independent reference voltage reference source
- Internal integrated low-voltage detection unit
- Clock
 - 4MHz~32MHz external high-speed crystal
 - 32.768KHz External low-speed crystal
 - Internal high-speed RC 16MHz
 - Internal multi-speed RC 100K~4MHz
 - Internal low-speed RC 40KHz
 - Built-in high speed PLL
 - Support 1-channel clock output, which can be configured as low-speed or high-speed clock output
- Reset
 - Support power-on/brown-out/external pin reset
 - Support programmable low voltage detection and reset
 - Support watchdog reset

Communication interface

- 5 x U(S)ART interfaces, including 3x USART interfaces (support ISO7816, IrDA, LIN) and 2x UART interfaces
- 1 x LPUART, support wake-up MCU in STOP2 mode
- 2 x SPI interfaces, up to 16 Mbps, support I2S
- 2 x I2C interfaces, up to 1 MHz, master-slave mode is configurable, slave mode support dualaddress response
- 1 x USB2.0 FS Device interface
- 1 x CAN 2.0A/B bus interface
- 1 x DMA controller, each controller support 8 channels, channel source adddress and destination address can be arbitrarily configurable
- 1 x RTC real-time clock, support leap year perpetual calendar, alarm event, periodic wake up, support internal and external clock calibration

• Time counter

- 2 x 16-bit advanced timer counters, support input capture, complementary output, quadrature encoder input, maximum control accuracy 9.25ns; each timer has 4 independent channels, of which 3 channels support 6 complementary PWM outputs
- 5x 16-bit general purpose timer counters, each timer has 4 independent channels, support input capture/output comparison/PWM output
- 2x 16-bit basic timer counters
- 1x 16-bit low-power timer counter, support double pulse counting function, can work in STOP2 mode
- 1x 24 bit SysTick
- 1x 7 bit Window Watchdog (WWDG)
- 1x 12 bit Independent Watchdog (IWDG)
- Support up to 64 GPIOs

Programming mode

- Support SWD/JTAG online debugging interface
- Support UART、USB Bootloader

• Security features

- Built-in cryptographic algorithm hardware acceleration engine
- Support AES、DES、TDES、SHA1/224/256, SM1、 SM3、SM4、SM7 algorithms
- Flash storage encryption, Multi-user partition
- Management Unit (MMU)
- TRNG true random number generator
- CRC16/32 operation
- Support write protection (WRP), multiple read protection (RDP) levels (L0/L1/L2)
- Support security start-up, program encryption download, security update
- Support external clock failure detection, tamper detection
- 96-bit UID and 128-bit UCID

RF Features

- Working frequency: 113 960 MHz
- Modulation style: OOK, 2 (G)FSK, 4 (G)FSK
- Data rate: 0.1 1000 kbps
- Sensitivity: 2 FSK, -122 dBm DR=2.4 kbps, 433.92 MHz 4 FSK, -88 dBm DR=1 Mbps,433.92 MHz OOK, -94 dBm DR= 300 kbps, 433.92 MHz
- RX current: 9.6 mA (DCDC)@ 433.92 MHz, FSK (only for RF working current)
- TX current: 30 mA @ 13 dBm, 433.92 MHz, FSK
 82 mA@ 20 dBm, 433.92 MHz, FSK
 (only for RF working current)
- Supporting both direct and packet modes, with configurable packet handler and 128-Byte FIFO

System Features

- Working voltage: 1.8 3.6 V
- Working temperature: -40 85 °C
- Package: QFN 68 7x7

Overview

CMT2391F128, integrated a 32-bit ARM Cortex-M4 core, is an ultra-low power, high-performance, OOK / (G)FSK / 4 (G)FSK based RF transceiver, applicable to various applications within the 113 - 960 MHz frequency band. The product is part of the CMOSTEK NextGenRF[™] product family which covers a complete product line consisting of transmitters, receivers and transceivers. The high-density integration of CMT2391F128 simplifies the required BOM in system design. With Tx power reaching +20 dBm and sensitivity reaching -122 dBm, it can achieve optimized performance of application RF links. Through providing multiple data packet formats and code methods, this product ensures the flexible supporting of various applications. Besides, CMT2391F128 provides functions such as 128-byte Tx/Rx FIFO, multiple GPIO and interrupt configurations, Duty-Cycle mode, LBT (listen before talk), high-precision RSSI, LBD, power on reset, low-frequency clock output, quick frequency hopping, squelch, etc., which allows more flexible application design and gains more product differentiation capability.

Application

- Auto metering
- Home security and building automation
- Wireless sensor nodes and industrial monitoring
- ISM band data communication
- Tag reader and writer

Ме	mory		Anal	log pe	eripheral Digital peripheral						Pookogo									
ROM	RAM	ADC	DAC	ΟΡΑ	СМР	POR BOR	LVD LVR	RTC	WDT	Timer	UART	SPI	I2C	125	GPIO	LCD	USB	CAN	DMA	Раскаде
128KB Flash	24KB	12bits 10-ch 4.5Msps	12bits 1Msps	2	2	\checkmark	\checkmark	1	2	11	x5 LPx1	2	2	1	44	17x4	1	1	x8ch	QFN 68

Table 1-1. CMT2391F128 Resources List

Figure 1-1. CMT2391F128 (QFN 68 7x7) Typical Application Diagram (DC-DC Disabled)

.			Compor				
Signal	Description	315 MHz +20 dBm	433 MHz +20 dBm	868 MHz +20 dBm	915 MHz +20 dBm	Unit	Supplier
C1	±5%, 0402 NP0, 50 V	22	12	12	12	pF	
C2	±5%, 0402 NP0, 50 V	6.8	5.6	3.3	3.3	pF	
C3	±5%, 0402 NP0, 50 V	8.2	6.2	3.3	3.0	pF	
C4	±5%, 0402 NP0, 50 V	8.2	NC	NC	NC	pF	
C5	±5%, 0402 NP0, 50 V	NC	NC	NC	NC	pF	
C6	±5%, 0402 NP0, 50 V	5.6	3.9	1.8	1.8	pF	
C7	±5%, 0402 NP0, 50 V	5.6	3.9	1.8	1.8	pF	
C8	±5%, 0603 NP0, 50 V		2	.2		uF	
C9	±5%, 0402 NP0, 50 V	1				uF	
C10	±5%, 0402 NP0, 50 V	220				pF	
C11	±5%, 0402 NP0, 50 V		1	00		nF	

Table 1-2. BOM of 20 dBm Direct Tie (Disable DC-DC)

			Compor	net Value			0	
Signal	Description	315 MHz +20 dBm	433 MHz +20 dBm	868 MHz +20 dBm	915 MHz +20 dBm	Unit	Supplier	
C12	±5%, 0603 NP0, 50 V	4.7				uF		
C13	±5%, 0402 NP0, 50 V		Ν	IC		pF		
C14	±5%, 0402 NP0, 50 V		Ν	IC		pF		
L1	±5%, 0603 Ceramic Chip Inductor	220	180	100	100	nH	Sunlord SDCL	
L2	±5%, 0603 Ceramic Chip Inductor	68	47	15	12	nH	Sunlord SDCL	
L3	±5%, 0603 Ceramic Chip Inductor	56	39	15	12	nH	Sunlord SDCL	
L4	±5%, 0603 Ceramic Chip Inductor	33	33	8.2	6.2	nH	Sunlord SDCL	
L5	±5%, 0603 Ceramic Chip Inductor	47	33	8.2	6.2	nH	Sunlord SDCL	
L6	±5%, 0603 Ceramic Chip Inductor	47	33	15	12	nH	Sunlord SDCL	
L7	±5%, 0603 Ceramic Chip Inductor	47	33	15	12	nH	Sunlord SDCL	
L8	±5%, 0603 Ceramic Chip Inductor	220	68	33	33	nH	Sunlord SDCL	
L9	±5%, 0603 Ceramic Chip Inductor	33	33 NC NC NC		NC	nH	Sunlord SDCL	
X1	±10 ppm, SMD	32			MHz	EPSON		
U1	CMT2391F128 SoC					-	CMOSTEK	

Figure 1-2. CMT2391F128 (QFN 68 7x7) Typical Application Diagram (DC-DC Enabled)

			Compon				
Signal	Description	315 MHz +20 dBm	433 MHz +20 dBm	868 MHz +20 dBm	915 MHz +20 dBm	Unit	Supplier
C1	±5%, 0402 NP0, 50 V	22	12	12	12	pF	
C2	±5%, 0402 NP0, 50 V	6.8	5.6	3.3	3.3	pF	
C3	±5%, 0402 NP0, 50 V	8.2	6.2	3.3	3.0	pF	
C4	±5%, 0402 NP0, 50 V	8.2	NC	NC	NC	pF	
C5	±5%, 0402 NP0, 50 V	NC	NC	NC	NC	pF	
C6	±5%, 0402 NP0, 50 V	5.6	3.9	1.8	1.8	pF	
C7	±5%, 0402 NP0, 50 V	5.6	3.9	1.8	1.8	рF	
C8	±5%, 0603 NP0, 50 V		2	2		uF	
C9	±5%, 0402 NP0, 50 V		1				
C10	±5%, 0402 NP0, 50 V	220					
C11	±5%, 0402 NP0, 50 V		100				
C12	±5%, 0603 NP0, 50 V		4	7		uF	

Table 1-3. BOM of 20 dBm Direct Tie (DC-DC Enabled)

			Compon	ent Value			Ourselier	
Signal	Description	315 MHz +20 dBm	433 MHz +20 dBm	868 MHz +20 dBm	915 MHz +20 dBm	Unit	Supplier	
C13	±5%, 0402 NP0, 50 V		NC					
C14	±5%, 0402 NP0, 50 V		Ν	IC		pF		
C15	±5%, 0402 NP0, 50 V		1	00		nF		
L1	±5%, 0603 Ceramic Chip Inductor	220	180	100	100	nH	Sunlord SDCL	
L2	±5%, 0603 Ceramic Chip Inductor	68	47	15	12	nH	Sunlord SDCL	
L3	±5%, 0603 Ceramic Chip Inductor	56	39	15	12	nH	Sunlord SDCL	
L4	±5%, 0603 Ceramic Chip Inductor	33	33	8.2	6.2	nH	Sunlord SDCL	
L5	±5%, 0603 Ceramic Chip Inductor	47	33	8.2	6.2	nH	Sunlord SDCL	
L6	±5%, 0603 Ceramic Chip Inductor	47	33	15	12	nH	Sunlord SDCL	
L7	±5%, 0603 Ceramic Chip Inductor	47	33	15	12	nH	Sunlord SDCL	
L8	±5%, 0603 Ceramic Chip Inductor	220	68	33	33	nH	Sunlord SDCL	
L9	±5%, 0603 Ceramic Chip Inductor	33	NC	NC	NC	nH	Sunlord SDCL	
L10			1	0	·	uH		
X1	±10 ppm, SMD	32			MHz	EPSON		
U1	CMT2391F128 SoC					-	CMOSTEK	

Table of Contents

1	Electrical Characteristic	.10
	1.1 Recommended Operation Condition	.10
	1.2 Absolute Maximum Rating	.10
	1.3 Power Consumption	.11
	1.5 RF Transmitter Specification	.13
	1.6 Settling Time of RF Status Switching	.14
	1.7 RF Frequency Synthesizer	.14
	1.8 Crystal Oscillator Specification	16
	1.9.1 General Operating Conditions	.16
	1.9.2 Operating Conditions at Power-on and Power-off	.16
	1.10 Embedded Reset and Power Control Module Characteristics	.17
	1.11 Internal Reference Voltage	.17
	1.12 Power Supply Current Characteristic	.18
	1 14 Internal Clock Source Characteristics	22
	1.15 Time to Wake up from Low Power Mode	.24
	1.16 PLL Characteristics	.24
	1.17 FLASH Memory Characteristics	.24
	1.18 Absolute Maximum (Electrical Sensitivity)	25
	1.20 MCU NRST Pin Characteristics	.23
	1.21 Timer (TIM) Characteristics	.29
	1.22 I2C Interface Characteristics	.30
	1.23 SPI/I ² S Interface Characteristics	.32
	1 25 ADC Characteristic	37
	1.26 Internal Reference Source (V _{REFBUFF}) Electrical Parameters	.40
	1.27 Operational Amplifier (OPAMP) Electrical Parameters	.41
	1.28 Comparator 1(COMP1) Electrical Parameters	.42
	1.29 Comparator 2(COMP2) Electrical Parameters	.43 43
	1.31 Liquid Crystal Display Driver (Segment LCD) Characteristics.	.44
	1.32 Temperature Sensor (TS) Characteristics	.45
2	Pin Description	.46
3	Chip Frame	.53
4	Sub-G Transceiver	.54
	4.1 Transmitter	54
	4.2 Receiver	55
	4.3 Power-on Reset (POR)	.55
	4.4 Crystal Oscillator	.56
	4.5 Low Power Prequency Oscillator (LPOSC)	.50
	4.7 Received Signal Strength Indicator (RSSI)	.56
	4.8 Phase Jump Detector (PJD)	.57
	4.9 Clock Data Recovery (CDR)	.57
	4.10 Fast Frequncy Hopping	.58
	4.11 Chip Operation	.00
		.58
		.59
	4.11.3 Transceiver Working Status, Timing and Power Consumption	.61 64
_		.04
5	Controller Function	.66
	5.1 Flash Memory	.66
	5.1.1 Embedded Flash Memory	.66
	5.1.2 Embedded SRAM	.66
	5.1.3 Nested Vector Interrupt Controller (NVIC)	.66

		011110/1110
	5.2 External Interrupt/Event Controller (EXTI)	
	5.5 Clock System	
	5.5 Power Supply Scheme	
	5.6 Reset	
	5.7 Programmable Voltage Detector	
	5.8 Voltage Regulator	
	5.9 Low Power Mode	69
	5.10 Direct Memory Access (DMA)	69
	5.11 Real Time Clock (RTC)	69
	5.12 Timer and Watchdog	70
	5.12.1 Basic Timer (TIM6 and TIM7)	70
	5.12.2 General-purpose Timer TIMx	70
	5.12.3 Low Power Timer LPTIM	71
	5.12.4 Advanced control timer (TIM1 and TIM8)	71
	5.12.5 Systick Timer (Systick)	72
	5.12.6 Watchdog (WDG)	72
	5.13 I2C Bus Interface	72
	5.14 Universal Synchronous/Asynchronous Transceiver (USART)	
	5.15 Serial Peripheral Interface (SPI)	75
	5.16 Low Power Asynchronous Transceiver (LPUART)	75
	5.17 Serial Audio Interface (I ² S)	
	5.18 Controller Area Network (CAN)	76
	5.19 Universal Serial Bus (USB)	77
	5.20 Algorithmic Hardware Acceleration Engine (SAC)	77
	5.21 Segment LCD Driver (Segment LCD)	
	5.22 General Purpose Input/Output Interface (GPIO)	
	5.23 Analog/Digital Converter (ADC)	79
	5.24 Digital/Analog Converter (DAC)	79
	5.25 Operational Amplifier (OPAMP)	80
	5.26 Analog Comparator (COMP)	80
	5.27 Temperature Sensor (TS)	
	5.28 Cyclic Redundancy Check Calculation Unit (CRC)	81
	5.29 Unique Device Serial Number (UID)	81
	5.30 Serial Single-wire JTAG Debug Port (SWJ-DP)	81
6	Order Information	82
7	Package Outline	83
8	Silk Printing Information	84
9	Revise History	85
10	Contacts	86

1 Electrical Characteristic

VDD= 3.3 V, TOP= 25 °C, F_{RF} = 433.92 MHz, sensitivity is measured by receiving a PN9 coded data and matching impedance to 50 Ω under 0.1% BER standard.Unless otherwise stated, all results are tested on the CMT2391F128-EM evaluation board.

1.1 Recommended Operation Condition

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	Vdd		1.8		3.6	V
Operating temperature	Тор		- 40		85	°C
Supply voltage slope			1			mV/us

1.2 Absolute Maximum Rating

Parameter	Symbol	Condition	Min.	Тур.	Max.
Supply voltage	V _{DD}		- 0.3	3.6	V
Interface voltage	Vin		- 0.3	3.6	V
Junction temperature	TJ		- 40	125	°C
Storage temperature	T _{STG}		- 50	150	°C
Soldering temperature	Tsdr	Last for at least 30 seconds Human body model (HBM)		255	°C
ESD rating ^[2]		Human body model (HBM)	- 2	2	kV
Latch-up current		@ 85 ℃	-100	100	mA

Notes:

[1]. Exceeding the Absolute Maximum Ratings may cause permanent damage to the equipment. This value is a pressure rating and does not imply that the function of the equipment is affected under this pressure condition, but if it is exposed to absolute maximum ratings for extended periods of time, it may affect equipment reliability.

[2]. The CMT2391F128 is a high-performance RF integrated circuit. The operation and assembly of this chip should only be performed on a workbench with good ESD protection.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

1.3 Power Consumption

Parameter	Symbol	Conditio	n	Typ. (Disable DCDC)	Typ. (Enable DCDC)	Unit
Sleep current		In sleep mode with sleep	timer disabled	40	0	nA
[1]	ISLEEP	In sleep mode with sleep	timer enabled	80	0	Typ. De DCDC) Unit nA nA nA nA 1.9 mA 5.2 mA 5.6 mA 5.9 mA 9.4 mA 9.4 mA 9.4 mA 9.4 mA 9.9 mA 9.9 mA 9.9 mA 9.9 mA 9.9 mA 10 mA 11 mA
Ready current	I _{Ready}			2.1	1.9	mA
			315 MHz	7.5	5.2	mA
RFS current			433 MHz	7.8	5.6	mA
[1]	I _{RFS}		868 MHz	8.4	5.9	mA
			915 MHz	8.5	5.9	mA
			315 MHz	7.5	5.2	mA
			433 MHz	7.8	5.6	mA
IFS current ¹¹	ITFS		868 MHz	8.4	5.9	mA
			915 MHz	8.5	5.9	mA
			315 MHz	13.5	8.8	mA
RX current ^[1]		DR = 10 kbps	433 MHz	13.6	9.4	mA
	I _{Rx}	Dev =10 kHz	868 MHz	14.3	9.9	mA
			915 MHz	14.3	9.9	mA
			315 MHz	74	/	mA
		20 dBm ^[2]	433 MHz	82	81	mA
			868 MHz	88	87	mA
			915 MHz	88	87	mA
			315 MHz	26.7	/	mA
		12 dBm [3]	433 MHz	30	29	mA
			868 MHz	33	32	mA
			915 MHz	34	33	mA
TX current ^[1]	ITx		315 MHz	21	15	mA
		10 dBm [3]	433 MHz	25	24	mA
			868 MHz	27	26	mA
			915 MHz	27	26	mA
			315 MHz	10.3	7	mA
		10 dBm [3]	433 MHz	11	10	mA
			868 MHz	12	11	mA
			915 MHz	12	11	mA

Notes:

[1]. 2 FSK, DR = 10 kbps, FDEV = 5 kHz, Vbat = 3.3 V.

[2]. Apply 20 dBm matching network.

[3]. Apply 13 dBm matching network.

1.4 RF Receiver Specification

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit		
		ООК		0.1		300	kbps		
Data rate	DR	2 (G)FSI	<	0.1		500	kbps		
		4 (GFSK		0.1		1000	kbps		
Deviation (RX)	F_{DEV}	(G)FSK,	4 (G)FSK ^[1]	0.5		350	kHz		
			DR = 2.4 kbps, F _{DEV} = 1.2 kHz, BW= 4.8 kHz		-122		dBm		
			$DR = 10$ kbps, $F_{DEV} = 5$ kHz		-114		dBm		
			$DR = 20$ kbps, $F_{DEV} = 10$ kHz		-112		dBm		
		FSK ^[2]	$DR = 50 \text{ kbps}, F_{DEV} = 25 \text{ kHz}$		-109		dBm		
			DR = 100 kbps, F _{DEV} = 50 kHz		-106		dBm		
			DR = 200 kbps, F _{DEV} = 100 kHz		-104		dBm		
@ 433 MHz			DR = 500 kbps, F _{DEV} = 250 kHz		-98		dBm		
(direct tie	S ₄₃₃		5 kbps		-110		dBm		
matching			50 kbps		-101		dBm		
network)		OOK ^[2]	100 kbps		-97		dBm		
			200 kbps		-95		dBm		
			300 kbps	5	-94		dBm		
			DR = 10 kbps. $F_{DEV}^{[3]} = 10 \text{ kHz}$		-109		dBm		
		4FSK ^[2]	$DR = 100 \text{ kbps}$. $E_{DEV}^{[3]} = 100 \text{ kHz}$		-99		dBm		
			DR = 1 Mbps, $F_{DEV}^{[3]} = 250 \text{ kHz}$		-88		dBm		
			DR = 2.4 kbps, F_{DEV} = 1.2 kHz, BW = 4.8		-120		dBm		
					_111		dBm		
			$DR = 20 \text{ kbps}, F_{EV} = 3 \text{ kHz}$		-110		dBm		
		FSK ^[2]	$DR = 50 \text{ kbps}, F_{DEV} = 25 \text{ kHz}$		-107		dBm		
			$DR = 100 \text{ kbps}$ $F_{DEV} = 50 \text{ kHz}$		-104		dBm		
Sonoitivity			$BR = 200 \text{ kbps}, F_{BEV} = 30 \text{ kHz}$		-104		dBm		
@ 868 MHz			DR = 500 kbps, T Bev = 100 kHz		-102		dPm		
(direct tie	S ₈₆₈		5 kbpc		-30		dPm		
matching			50 kbps		- 100		dPm		
network)					-90		dBm		
		OOK			-94		dDm		
			200 kbps		-93		uDili		
					-92		dBm		
			$DR = 10 \text{ kbps}, F_{DEV}^{(3)} = 10 \text{ kHz}$		-100		dBm		
		4530	$DR = 100 \text{ kDps}, P_{DEV} = 100 \text{ kHz}$		-90		dBm		
Natar			$DR = 1$ Midps; $P_{DEV}^{(3)} = 230$ RHz		-00		aBm		
[1]. BT = 0.5 b [2]. In case of [3] For 4 FSK	 Notes: [1]. BT = 0.5 by default for Gaussian modulation. [2]. In case of unspecified BW value, a crystal of 10 ppm is used and the BW value is automatically calculated by RFPDK. 								
the centered fre	quency point						.grity and		
Receiver channel bandwidth	BW	Receive	channel bandwidth	1.3		1168	kHz		
Saturation input signal level	PLVL					20	dBm		

					-		
Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
RSSI range	RSSI	By one step of 1 dB		-127		20	dBm
Co-channel rejection @ 433 MHz, 868 MHz	CCR	DR = 2.4 kbps; FDEV = 1.2 kHz; BW = 4.8 kHz CW interference, BER<0.1%			-7		dB
Adjacent channel rejection @ 433 MHz	ACR-I ₄₃₃	DR = 2.4 kbps; F _{DEV} = 1.2 kHz; BW = 4.8 kHz, Channel Space = 7 CW interference, BER<0.1%	12.5 kHz,		62		dB
Adjacent channel rejection @ 868 MHz	ACR-I ₈₆₈	DR = 2.4 kbps; F _{DEV} = 1.2 kHz; BW = 4.8 kHz, Channel Space = 7 CW interference, BER < 0.1%	12.5 kHz,		56	5	dB
		$DR = 2.4$ kbps: $F_{DEV} = 1.2$ kHz:	±1 MHz offset		76		dB
Blocking @ 433 MHz	BI ₄₃₃	BW = 4.8 kHz,	±2 MHz offset		80		dB
		CW Interference, BER < 0.1%	±10 MHz offset		84		dB
			±1 MHz offset		66		dB
Blocking @ 868 MHz	BI ₈₆₈	BW = 4.8 kHz,	±2 MHz offset		76		dB
		CW interference, BER < 0.1%	±10 MHz offset	7	83		dB
Image		DR = 2.4 kbps; F _{DEV} = 1.2 kHz;	Before calibration		30		dB
Rejection @ 433 MHz	IMR ₄₃₃	BW = 4.8 kHz CW interference, BER < 0.1%	After calibration		56		dB
Image		DR = 2.4 kbps; F_{DEV} = 1.2 kHz;	Before calibration		26		dB
@ 868 MHz	IMR ₈₆₈	BW = 4.8 kHz CW interference, BER < 0.1%	After calibration		51		dB
Input 3rd order intercept point @ 433 MHz	IIP3 ₄₃₃	DR = 2.4 kbps; F_{DEV} = 1.2 kHz; two-tone test with 10 MHz and 20	MHz deviations.		-13		dBm
Input 3rd order intercept point @ 868 MHz	IIP3 ₈₆₈	DR = 2.4 kbps; F _{DEV} = 1.2 kHz; two-tone test with 10 MHz and 20	MHz deviations.		-12		dBm
Receiver	7:	RXP and RXN	433 MHz	15	0 Ω// 0.8 j	οF	
impedance	Zin	Differential input impedance	868 MHz	13	4 Ω// 1.0 j	рF	

1.5 RF Transmitter Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Output power	Pout	Specific peripheral components are required according to different frequency bands.	-10		+20	dBm
Output power step	P _{STEP}			1		dB
GFSK Gaussian filter coefficient	BT		0.3	0.5	1.0	-
Output power change in	P _{OUT-TOP}	Temperature range: -40 to +85 °C		1		dB

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
different temperature						
0		P _{OUT} = +13 dBm, 433 MHz, F _{RF} < 1 GHz			-54	dBm
Spurious emissions		1 GHz to 12.75 GHz, including Harmonic			-36	dBm
Harmonic output[1]	H2 ₃₁₅	2 nd harmonic, +20 dBm P _{OUT}		-57		dBm
for FRF= 315 MHz	H3 ₃₁₅	3 rd harmonic, +20 dBm P _{OUT}		-75		dBm
Harmonic output[1]	H2 ₄₃₃	2 nd harmonic, +20 dBm P _{OUT}		-56		dBm
for FRF= 433 MHz	H3 ₄₃₃	3 rd harmonic, +20 dBm P _{OUT}		-71		dBm
Harmonic output[1]	H2 ₈₆₈	2 nd harmonic, +20 dBm P _{OUT}		-47		dBm
for FRF= 868 MHz	H3 ₈₆₈	3 rd harmonic, +20 dBm P _{OUT}		-72		dBm
Harmonic output[1]	H2 ₉₁₅	2 nd harmonic, +20 dBm P _{OUT}		-47		dBm
for FRF= 915 MHz	H3 ₉₁₅	3 rd harmonic, +20 dBm P _{OUT}		-73		dBm
Harmonic output[1]	H2 ₃₁₅	2 nd harmonic, +13 dBm P _{OUT}		-51		dBm
for FRF= 315 MHz	H3 ₃₁₅	3 rd harmonic, +13 dBm P _{OUT}		-72	•	dBm
Harmonic output[1]	H2 ₄₃₃	2 nd harmonic, +13 dBm P _{OUT}		-44		dBm
for FRF= 433 MHz	H3 ₄₃₃	3 rd harmonic, +13 dBm Pout		-58		dBm
Harmonic output[1]	H2 ₈₆₈	2 nd harmonic, +13 dBm P _{OUT}		-50		dBm
for FRF= 868 MHz	H3 ₈₆₈	3 rd harmonic, +13 dBm P _{OUT}		-71		dBm
Harmonic output[1]	H2 ₉₁₅	2 nd harmonic, +13 dBm P _{OUT}		-54		dBm
for FRF= 915 MHz	H3 ₉₁₅	3 rd harmonic, +13 dBm P _{OUT}		-73		dBm
Notes:						

[1]. The harmonic level mainly depends on the quality of matching network. The parameters above are measured on CMT2391F128-EM.

1.6 Settling Time of RF Status Switching

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	T _{SLP-RX}	From Sleep to RX		660		us
	T _{SLP-TX}	From Sleep to TX		660		us
	T _{STB-RX}	From Standby to RX		160		us
	Т _{STB-TX}	From Standby to TX		160		us
Settling time	T _{RFS-RX}	From RFS to RX		16		us
\sim	T _{TFS-RX}	From TFS to TX		16		us
	T _{TX-RX}	From TX to RX (Ramp down requires 2T _{symbol} time)		2T _{symbol} +168		us
	T _{RX-TX}	From RX to TX		220		us
Notes:						

[1]. T_{SLP-RX} and T_{SLP-TX} mainly depend on crystal oscillating, which is largely related to crystal itself.

1.7 RF Frequency Synthesizer

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
F	F	Poquire different metabing networks	675		960	MHz
Frequency range	F _{RF}	Require different matching hetworks.	338		640	MHz

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
			113		320	MHz
		675 ~ 960 MHz		600		kHz
		450 ~ 640 MHz		400		kHz
		338 ~ 450 MHz		300		kHz
Frequency deviation	Fdev_rng ^[1]	225 ~ 320 MHz		200		kHz
range		169 ~ 225 MHz		150		kHz
		135 ~ 169 MHz		120		kHz
		113 ~ 135 MHz		100		kHz
Frequency resolution	F _{RES}			60		Hz
Frequency tuning time	t _{TUNE}			60		us
	PN ₄₃₃	10 kHz Frequency Offset		-101		dBc/Hz
Phase noise @ 433 MHz		100 kHz Frequency Offset		-114		dBc/Hz
		1 MHz Frequency Offset		-129		dBc/Hz
		10 MHz Frequency Offset		-134		dBc/Hz
		10 kHz Frequency Offset		-100		dBc/Hz
Phase noise	DN	100 kHz Frequency Offset		-109		dBc/Hz
@ 868 MHz	PIN868	1 MHz Frequency Offset		-126		dBc/Hz
		10 MHz Frequency Offset		-129		dBc/Hz

Notes:

[1]. For 2 FSK and 4 FSK, F_{DEV} represents the frequency difference between the frequency points at the far ends (left and right) and the centered frequency point.

1.8 Crystal Oscillator Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Crystal frequency ^[1]	F _{XTAL}			32		MHz
Crystal frequency precision ^[2]	ppm_ _{XTAL}		0	20	100	ppm
Load resistance	C_{LOAD_XTAL}			15		рF
Crystal equivalent resistance	Rm _{XTAL}			60		Ω
Crystal startup time [3]	t _{XTAL}			200		us

Notes:

[1]. The CMT2391F128 can utilize external reference clock to directly drive XIN pin through the coupling capacitor. The peak-to-peak value of external clock signal is required between 0.3 and 0.7 V.

[2]. It involves: (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature changing. The acceptable crystal frequency tolerance is subject to the bandwidth of the receiver and the RF tolerance between the receiver and its paired transmitter.

[3]. This parameter is largely related to crystal.

1.9 Controller Operating Conditions

1.9.1 General Operating Conditions

|--|--|

Symbol	Parameter	Condition	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	64	MHz
f _{PCLK1}	Internal APB1 clock frequency	·	0	16	101112
f _{PCLK2}	Internal APB2 clock frequency	-	0	32	
V _{DD}	Standard operating voltage	-	1.8	3.6	V
V _{DDA}	Analog operating of working voltage	Must be the same potential as VDD(1)	1.8	3.6	V
T _A	Ambient temperature (temperature number 7)		-40	105	°C
TJ	Junction temperature range	7 suffix version	-40	125	°C
1. It is recomme maximum of 300	nded that the same power supply be used to power th OmV difference is allowed between the Vpp and Vppa.	$e V_{DD}$ and V_{DDA} . Duri	ng power-or	and normal o	peration, a

1.9.2 Operating Conditions at Power-on and Power-off

Table 1-9-2. Operating Conditions at Power-on and Power-off

Symbol	Parameter	Condition	Min	Max	Unit
	V _{DD} rise time rate	Supply voltage goes from 0 to V _{DD}	20	8	μs/V
t _{VDD}	V _{DD} fall time rate	Supply voltage drops from V _{DD} to 0	80	~	

1.10 Embedded Reset and Power Control Module Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Pvd0_rising	2.1	2.15	2.2	V
		Pvd0_falling	2	2.05	2.1	V
		Pvd1_rising	2.25	2.3	2.35	V
N/	Programmable	Pvd1_falling	2.15	2.2	2.25	V
V _{PVD}	level selection	Pvd2_rising	2.4	2.45	2.5	V
		Pvd2_falling	2.3	2.35	2.4	V
		Pvd3_rising	2.55	2.6	2.65	V
		Pvd3_falling	2.45	2.5	2.55	V
		Pvd4_rising	2.7	2.75	2.8	V
		Pvd4_falling	2.6	2.65	2.7	V
		Pvd5_rising	2.85	2.9	2.95	V
		Pvd5_falling	2.75	2.8	2.85	V
		Pvd6_rising	2.95	3	3.05	V
		Pvd6_falling	2.85	2.9	2.95	V
V _{PVDhyst} (2)	PVD hysteresis		80	100	120	m V
		POR0	1.6	1.64	1.68	V
		PDR0	1.58	1.62	1.66	V
		POR1	2.05	2.1	2.15	V
		PDR1	1.95	2	2.05	V
	VDD Power on/off Reset threshold	POR2	2.25	2.3	2.35	V
		PDR2	2.15	2.2	2.25	V
N/		POR3	2.55	2.6	2.65	V
V _{BOR}		PDR3	2.45	2.5	2.55	V
		POR4	2.85	2.9	2.95	V
		PDR4	2.75	2.8	2.85	V
T _{RSTTEM} PO ⁽²⁾	Reset duration		-	0.15		m s
1. Guaranteed t	by design, not tested in	production.				

Table 1-10. Features of Embedded Reset and Power Control Modules

1.11 Internal Reference Voltage

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VREFINT	Internal reference voltage	-40℃< T _A < +105℃	1.164	1.20	1.26	V
TS_vrefint(1)	The sampling time of the ADC when reading the internal reference voltage		-	5.1	10 ⁽²⁾	μs
1. The shortest sar 2. Guaranteed by o	mpling time is obtained the design, not tested in produ	rough multiple loops in the applicatio	on.			

1.12 Power Supply Current Characteristic

Current consumption is a combination of parameters and factors, including operating voltage, ambient temperature, load of I/O pins, software configuration of the product, operating frequency, turnover rate of I/O pins, program location in memory, and code executed.

Maximum current consumption

The microcontroller is under the following conditions:

- All I/O pins are in input mode and are connected to a static level -- VDD or VSS (no load).
- All peripherals are disabled except otherwise noted.
- The access time of the flash memory is adjusted to the fastest operating frequency (0 waiting periods from 0 to 32MHz, 1 waiting period from 32 to 64MHz).
- Instruction prefetch is enabled (note: this parameter must be set before setting the clock and bus divider).
- When the peripheral is enabled: $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$.

Table 1-12-1. Maximum Current Consumption in Operating Mode

where the Data Processing Code is Run From Internal Flash

Symbol	Parameter	Condition	fнсlк	Typ ⁽¹⁾ V _{DD} =3.3V,T _A = 105℃	Unit
		Internal clock,	64MHz	6.0	
I (2)	Supply current in	enable all peripherals	32MHz	3.8	~^ ^
, , , , , , , , , , , , , , , , , , ,	operation mode	Internal clock, disable all peripherals	64MHz	4	ША
			32MHz	2.5	
1. Based on comp	rehensive evaluation	, not tested in production	on.		

Internal clock is 8MHz, enable PLL when fHCLK > 8MHz.

Table 1-12-2. Maximum Current Consumption in Sleep Mode,

Code Running in Internal Flash Running

Parameter	Symbol	Condition	fнськ	f _{HCLK} Typ ⁽¹⁾ V _{DD} =3.3V, T _A = 105℃		
Supply current in	IDD	Internal clock, enable	64MHz	4.2		
		ali periprierais	32MHz	2.5		
sleep mode		Internal clock, disable all peripherals	64MHz	2.2	mA	
			32MHz	1.6		
1. Based on comprehensive evaluation, not tested in production.						

2. Internal clock is 8MHz, enable PLL when fHCLK > 8MHz.

Typical Current Consumption

MCU is under the following conditions:

- All I/O pins are in input mode and are connected to a static level -- VDD or VSS (no load).
- All peripherals are disable unless otherwise noted.
- The access time of the flash memory is adjusted to the fastest operating frequency (0 waiting period from 0 to 32MHz, 1 waiting period from 32 to 64MHz).

Instruction prefetch is enabled (note: this parameter must be set before setting the clock and bus divider). When the peripheral is turned on: $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$.

Table 1-12-3. Typical Current Consumption in Operating Mode,

Where Data Processing Code is Run from Internal Flash

Parameter				Ту			
	Symbol	Condition	fнс∟к	Enable all peripherals	Disable all peripherals	Unit	
Supply current		Internal alaak	64 MHz	5.9	3.7	~^^	
mode	IDD	Internal Clock	32 MHz	3.3	2.3	MA	
1.Typical values are measured at TA = 25 $^{\circ}$ C and V _{DD} = 3.3V. 2.Internal clock is 8MHz, enable PLL when f _{HCLK} > 8MHz.							

Table 1-12-4. Typical Current Consumption in Sleep Mode,

Data Processing Code is Run from Internal Flash

_				Тур			
Parameter	Symbol	Condition	fнс∟к	Enable all peripherals	Disable all peripherals	Unit	
Supply current	la a		64 MHz	3.8	2	m۸	
in sleep mode	IDD		32 MHz	2.3	1.4	ША	

1. Typical values are measured at TA = 25° C and VDD = 3.3V.

2. ADC additional 0.2mA current consumption is added. In the application environment, this part of the current is increased only when the ADC is turned on (set ADC_CTRL2.ON bit).

3. Internal clock is 8MHz, enable PLL when fHCLK > 8MHz.

• Low power mode current consumption

The microcontroller is under the following conditions:

- All I/O pins are in input mode and are connected to a static level of -VDD or VSS (no load).
- All peripherals are off disabled otherwise noted.

Table 1-12-5. Typical and Maximum Current Consumption in Shutdown and Standby Mode

				Typs (1)	
Symbol	Parameter	Condition	$V_{DD}=3.3V$ $T_{A}=25^{\circ}C$	$V_{DD}=3.3V$ $T_{A}=105^{\circ}C$	Unit
Idd_stop2	Supply current in Stop mode 2 (STOP2)	The external low-speed clock is on, the RTC is running, SRAM2 is on, all I/O states are on, and the independent watchdog is off	3 ⁽¹⁾ 27 ⁽¹⁾		
		Low speed internal RC oscillator and independent watchdog are on	1.6 ⁽¹⁾	7.6 ⁽¹⁾	
I _{DD_STANDBY}	Supply current in STANDBY mode The low independ the low s closed	The low speed internal RC oscillator is on and the independent watchdog is off	1.5(1)	7.5(1)	μΑ
1DD_STANDBY		The low speed internal RC oscillator and independent watchdog are closed, and the low speed oscillator and RTC are closed	1.4 ⁽¹⁾	7.3(1)	
1. Guaranteed by cha	aracterization, not tes	sted in production.			

1.13 External Clock Source Characteristics

• High-speed external clock source (HSE)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock frequency(1)		1	8	32	MHz
V _{HSEH}	OSC_IN Input pin high level voltage		0.8 V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN Input pin low level voltage	-	Vss	-	$0.3 V_{\text{DD}}$	
t _{w(HSE)}	Time when OSC_IN is high or low(1)		16	-	-	
t _{r(LSE)} t _{f(LSE)}	OSC_IN rise or fall time(1)		-	-	20	ns
$DuCy_{(HSE)}$	Duty cycle		45	-	55	%
ار	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
4.0						

Table 1-13-1. High-speed External User Clock Features

1. Guaranteed by design, not tested in production.

• Low-speed External Clock Source (LSE)

Table 1-13-2. Features of a Low-speed External User Clock

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
f _{LSE_ext}	User external clock frequency ⁽¹⁾		0	32.768	1000	KHz	
V _{LSEH}	OSC32_IN Input pin high level voltage		$0.7 V_{DD}$	-	V _{DD}	V	
V _{LSEL}	OSC32_IN Input pin low level voltage		V _{SS}	-	0.2	v	
tw _(LSE)	- OSC32_IN High or low time ⁽¹⁾		450	-	-	20	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN Rise or fall time ⁽¹⁾		-	-	50	ns	
DuCy _(LSE)	Duty ratio		30	-	70	%	
١L	OSC32_IN Input leakage current ⁽¹⁾	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA	
1. Guaranteed by o	. Guaranteed by design, not tested in production.						

Figure 1-13-2. AC Timing Diagram of an External Low Speed Clock Source

• High-speed external clock generated by using a crystal/ceramic resonator

High speed external clocks (HSE) can be generated using an oscillator consisting of a 4~32MHz crystal/ceramic resonator. The information presented in this section is based on a comprehensive feature evaluation using typical external components listed in the table below. In applications, the resonator and load capacitance must be as close to the oscillator pins as possible to reduce output distortion and stabilization time at startup. For detailed crystal resonator parameters (frequency, package, accuracy, etc.), please consult the appropriate manufacturer. (The crystal resonator mentioned here is usually referred to as passive crystal oscillator)

Table 1-13-3. HSE 4 \sim :	32 MHz Oscillator	Characteristics
------------------------------	--------------------------	-----------------

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{osc_IN}	Oscillator frequency		4	8	32	MHz
R _F	Feedback resistance		-	160	-	kΩ
i ₂	HSE drive current	V _{DD} =3.3 V, V _{IN} =V _{SS} 30 pF load	-	1.5	-	mA
gm	Transconductance of the oscillator	startup	-	10	-	mA/V
t _{su(HSE)} ⁽⁴⁾	Startup time (8M crystal)	V_{DD} is stabled	-	3		ms

1. The characteristic parameters of the resonator are given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results, not tested in production.

3..t_{su}(HSE) is the start time, from the time when HSE is enabled by the software to the time when a stable 8MHz oscillation is obtained. This value is measured on a standard crystal resonator and can vary widely depending on the crystal manufacturer.

Figure 1-13-3. Typical Application by Using 8 MHz Crystal

Note : The R_{EXT} value depends on the properties of the crystal. Typical values are 5 to 6 times R_{S} .

• Low-speed external clock generated by a crystal/ceramic resonator

The low speed external clock (LSE) can be generated using an oscillator consisting of a 32.768 kHz crystal/ceramic resonator. In applications, the resonator and load capacitance must be as close to the oscillator pins as possible to reduce output distortion and stabilization time at startup. For detailed crystal resonator parameters (frequency, package, accuracy, etc.), please consult the appropriate manufacturer. (The crystal resonator mentioned here is usually referred to as passive crystal oscillator)

Note: For C_{L1} and C_{L2} , it is recommended to use high quality ceramic dielectric containers, and to select crystals or resonators that meet the requirements. Usually C_{L1} and C_{L2} have the same parameters. Crystal manufacturers usually give parameters for load capacitance as serial combinations of C_{L1} and C_{L2} .

Load capacitance C_L is calculated by the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, where C_{stray} is the capacitance of the pin and the PCB or PCB-related capacitance.

For example: If a resonator with load capacitance CL = 6pF is selected and Cstray = 2pF, then CL1 = CL2 = 8pF.

Table 1-13-4. LSE Oscillator Characteristics (f_{LSE}=32.768kHz)(1)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _F	Feedback resistance		-	5		MΩ
g _m	Transconductance of the oscillator		5	15	-	μA/V
t _{SU(LSE)} ⁽³⁾	Startup time	V_{DD} is stabilized	-	2	-	S

1. Guaranteed by design, not tested in production.

2. See the cautions section at the top of this form.

 t_{SU(LSE)} is the starting time, which is the period from the LSE enabled by the software to the stable 32.768khz oscillation. This value is measured on a standard crystal resonator and can vary widely depending on the crystal manufacturer.

4. Please refer to the LSE crystal selection guide.

5. In order to ensure the stability of crystal operation, do not turn the adjacent pins when crystal is working.

Figure 1-13-4. Typical Application of 32.768kH Crystal

1.14 Internal Clock Source Characteristics

High Speed Internal (HSI) RC Oscillator

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HSI}	frequency	VDD = 3.3 V, $T_A = 25^{\circ}C$, after calibration	15.84	16	16.16	MHz
Tempe ACC _{HSI}	T	$VDD = 3.3 V$, $TA = -40 \sim 105 ^{\circ}C$, temperature drift	-2.5	-	2.5	%
	l emperature drift of HSI oscillator	$VDD = 3.3 V, TA = -10 \sim 85^{\circ}C,$ temperature drift	-1.5	-	1.0	%
		$VDD = 3.3 V$, $TA = 0 \sim 70 ^{\circ}C$, temperature drift	-1.2	-	0.7	%
t _{SU(HSI)}	HSI oscillator start time		-	-	5.0	μs
I _{DD(HSI)}	HSI oscillator power		-	80	100	μA

Table 1-14-1. HSI Oscillator Characteristics (1)(2)

	consumption		-	135	160	
1. V _{DD} = 3.3V, 2. Guaranteed 3. After Reflow	$T_A = -40 \sim 105$ °C unless othe I by design, not tested in pro v, the frequency will drift, and	rwise specified. duction. d the maximum drift value is about +1.6 ^c	%.			

• Multi-speed internal (MSI) RC oscillator

Table 1-14-2. MSI Oscillator Characteristics (1)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Range 0		-	100	-	KHz
	Range 1		-	200	-	KHz
	Range 2	MSI Frequency after Factory	-	400	-	KHz
f _{MSI}	Range 3	calibration, done at $V_{DD} = 3.3V$ and	-	800	-	KHz
	Range 4	T _A = 27 °C	-	1	-	MHz
	Range 5		-	2	-	MHz
	Range 6		3.96	4	4.1	MHz
Δ _{TEMP} (MSI) (2)	MSI oscillator	T _A = 0 to 85 °C	-	±1%@4M ±1.2%@100k	-	%
	frequency drift over temperature	T _A = -40 to 105 °C	-	±2%@4M ±3%@100k	-	%
	MSI oscillator	Range 0, V = 1.8V _{DD} to 3.6V	-	0.5 / - 1.5	-	%
$\Delta_{VDD}(MSI)^{(2)}$	V _{DD} (reference is 3 V)	Range 6, $V = 1.8V_{DD}$ to 3.6V	-	0.5 / - 5	-	%
		Range 0 /100k	-	20	-	us
		Range 1 /200k	-	12	-	us
		Range 2 /400k	-	8	-	us
ts∪(MSI) ⁽³⁾	MSI oscillator start-up	Range 3 /800k	-	6	-	us
	une	Range 4 /1M	-	10	-	us
		Range 5 /2M	-	7	-	us
		Range 6 /4M	-	6	-	us
		Range 0 /100k	-	1.0	-	uA
		Range 1 /200k	-	1.2	-	uA
		Range 2 /400k	-	1.8	-	uA
IDD(MSI) ⁽³⁾	MSI oscillator power	Range 3 /800k	-	3.2	-	uA
	consumption	Range 4 /1M	-	6	-	uA
		Range 5 /2M	-	9	-	uA
		Range 6 /4M	-	16	-	uA
1. $V_{DD} = 3.3V$, 2. This deviation	$T_A = -40 \sim 105 ^{\circ}C$ unless of on range is the deviation of	herwise specified. of the oscillator after calibration;				

3. Guaranteed by design, not tested in production.

• Low speed internal (LSI) RC oscillator

Table 1-14-3. LSI Oscillator Characteristics ⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Output frequency	25°C calibration, VDD = 3.3 V	38	40	42	KHz
		VDD = 1.8 V ~ 3.6 V, TA = -40 ~ 105℃	30	40	60	KHz
t _{SU(LSI)} ⁽³⁾	LSI oscillator startup time		-	40	80	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption		-	0.12	-	μÂ

1. VDD = 3.3V, TA = $-40 \sim 105^{\circ}C$ unless otherwise specified.

2. Guaranteed by characterization results, not tested in production.

1.15 Time to Wake up from Low Power Mode

The wake-up time listed belowed is measured during the wake-up phase of an 8MHz HSI RC oscillator. The clock source used when waking up depends on the current operating mode::

- STOP2 or STANDBY mode: clock source is RC oscillator
- SLEEP mode: The clock source is the clock used to enter sleep mode

Table 1-15-1. Wake Time in Low Power Mode

Symbol	Parameter	Тур	Unit			
t _{WUSLEEP} ⁽¹⁾	Wake up from SLEEP mode	10	HCLK ⁽²⁾			
t _{WUSLEEP} (1)	Wake up from Low-Power SLEEP mode	10	HCLK ⁽²⁾			
t _{WULPRUN} (1)	Wake up from Low-Power RUN mode	5.5	us			
twustop2 ⁽¹⁾	Wake up from STOP2 mode	12	us			
t _{WUSTDBY} (1)	Wake up from STANDBY mode	50	us			
1. The wake up time is measured from the start of the wake up event until the first instruction is read by the user program.						

2. The wake up time is obtained when MSI = 4MHz. If MSI is in other gears, the wake up time will be increased.

1.16 PLL Characteristics

Table 1-16. PLL Features

Symbol	Deremeter		Unit		
Symbol	Faiameter	Min	Тур	Max ⁽¹⁾	Unit
¢	PLL PFD input clock ⁽²⁾	4	8	32	MHz
PLL_IN	PLL Input clock duty cycle	40	50	60	%
f _{PLL_OUT}	PLL output clock ⁽²⁾	32	-	64	MHz
t _{LOCK}	PLL Ready indicates signal output time ⁽³⁾	-	-	150	μs
Jitter	RMS cycle-to-cycle jitter @64 MHz ⁽¹⁾	-	6	-	pS
lpll	Operating Current of PLL @64 MHz VCO frequency.	-	448	-	uA
1					

1. Based on comprehensive evaluation, not tested in production.

 Care needs to be taken to use the correct frequency doubling factor to input the clock frequency according to PLL so that f_{PLL_OUT} is within the allowable range.

1.17 FLASH Memory Characteristics

Table 1-17-1.	FLASH Memory	y Characteristics
---------------	---------------------	-------------------

Symbol	Parameter	Condition	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	32-bit programming time	T _A = -40 ∼ 105 °C	-	100	-	μs
t _{ERASE}	Page (2K bytes) erasure time	T _A = −40 ~ 105°C	-	2	20	ms
t _{ME}	Mass erase time	T _A = −40 ~ 105 °C;	-	-	100	ms
Vprog	Programming voltage		1.8	-	3.6	V
The power supply		Read mode, f _{HCLK} = 64 MHz, 1 waiting cycles, V _{DD} = 3.3 V	-	-	3.42	mA
00	current	Write mode, $f_{HCLK} = 64 \text{ MHz}$, $V_{DD} = 3.3 \text{ V}$	-	-	6.5	mA
		Erase mode, $f_{HCLK} = 64 \text{ MHz}$, $V_{DD} = 3.3 \text{ V}$	-	-	4.5	mA

		Power-down/stop mode, V _{DD} = 3.3~3.6 V	-	-	0.035	μA
1. Guaranteed by design, not tested in production.						

Table 1-17-2. Flash Endurance and Data Retention Life

Symbol	Parameter	Condition	Min ⁽¹⁾	Unit	
N _{END}	Endurance (note: erasure times)	TA = - 40 ~ 105°C (7 suffix versions);	100	Kcycle	
		10 kcycle ⁽²⁾ at TA = 85°C	30		
t _{RET}	Data retention period	10 kcycle ⁽²⁾ at TA = 105°C	20	Years	
NE I		10 kcycle ⁽²⁾ at TA = 125°C	10		
1. Based on c					
2. Cycling per					

1.18 Absolute Maximum (Electrical Sensitivity)

Based on three different tests (ESD, LU), a specific measurement method is used to test the strength of the chip to determine its performance in terms of electrical sensitivity.

• Electrostatic discharge (ESD)

Electrostatic discharge (a positive pulse followed by a negative pulse one second later) is applied to all pins of all samples, the size of which is related to the number of power pins on the chip (3 x (n+1) power pins). This test conforms to MIL-STD-883K Method 3015.9/ ESDA/JEDEC JS -002-2018 standard.

Table 1-18-1. Absolute Maximum ESD Value

Symbol	Parameter	Condition	Туре	Max	Unit	
VESD(HBM)	Electrostatic discharge voltage (human body model)	TA = +25 °C, In accordance with MIL-STD-883K Method 3015.9	2	4000	V	
VESD(CDM)	Electrostatic discharge voltage (charging device model)	TA = +25 °C, In accordance with ESDA/JEDEC JS -002- 2018	II	1000		
1.Based on comprehensive evaluation, not tested in production.						

• Static switch lock

To evaluate the locking performance, two complementary static locking tests were performed on six samples:

- Supply voltage exceeding limit for each power pin.
- Current is injected into each input, output, and configurable I/O pin. This test conforms to JEDEC78E IC latch standard.

Table 1-18-2. Electrical Sensitivity

Symbol	Parameter	Condition	Туре		
		TA(1) = +85 °C, in accordance with JEDEC78E			
LU	LU Static locking classes	$T_A^{(2)} = +25 \text{ °C}, \text{ in accordance with JEDEC78E}$	II class A		
1. Applicable to version F and later versions.					
2. Applicable to the previous version of version F.					

1.19 I/O Port Characteristics

• General input/output characteristics

All I/O ports are CMOS and TTL compatible.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IL}	Input low level voltage	TTI a sat	V _{SS}	-	0.8	
VIH	Input high level voltage	TTL port	2	-	V _{DD}	V
VIL	Input low level voltage	OMOC part	V _{SS}	-	$0.35V_{DD}$	V
VIH	Input high level voltage	Смоз роп	$0.65V_{DD}$	-	V _{DD}	
V _{hys}	Schmidt trigger voltage lag ^{(1) (5)}	-	0.1	-	-	
	\mathbf{C} a basis of the second state of the sec	V _{DD} =3.3V/2.5V	0.2	-	-	V
V _{hys}	Schmidt trigger voltage lager e	V _{DD} =1.8V	0.1 V _{DD}	-	-	
I _{lkg}	Input leakage current ⁽²⁾	V_{DD} = Maximum V_{PAD} = 0 or V_{PAD} = V_{DD}	-1	-	+1	μA
l _{ikg} ,fail- safe	Input leakage current ⁽³⁾	$V_{DD} = 0$, $V_{PAD} = 3.63V$ or $VDD < V_{PAD}$	-1	-	+1	μA
		$V_{\text{DD}}=3.3V,V_{\text{IN}}=V_{\text{SS}}$	90		170(190 ⁽⁷⁾)	
R _{PU}	Weak pull-up equivalent resistance ⁽⁴⁾	V_{DD} =2.5V, V_{IN} = V_{SS}	95	-	310	
		$V_{\text{DD}} = 1.8V, V_{\text{IN}} = V_{\text{SS}}$	135	\mathbf{O}	500	KO
		$V_{\text{DD}} = 3.3 \text{V}, V_{\text{IN}} = V_{\text{DD}}$	75(90 ⁽⁷⁾)	-	235(200 ⁽⁷⁾)	K12
R _{PD}	Weak pull-down equivalent resistance ⁽⁴⁾	V_{DD} = 2.5V, V_{IN} = V_{DD}	85	-	315	
		$V_{DD} = 1.8V, V_{IN} = V_{DD}$	120	-	495	
C _{IO}	Capacitance of I/O pins	-	-	5	-	pF

Table 1-19-1. I/O Static Characteristics

1. The hysteresis voltage of Schmitt trigger switching level. Based on comprehensive evaluation, not tested in production.

2. The leakage current may be higher than the maximum if there is reverse current in adjacent pins.

3. Not support fail-safe IOs include PD14, PD15, PA11, PA12, PA4, PB2.

4. Pull-up and pull-down resistors are implemented with a switchable PMOS/NMOS.

5. Applicable to version F and later versions.

6. Applicable to the previous version of version F.

7. Applicable to version F and later versions.

All I/O ports are CMOS and TTL compatible (no software configuration required) and their features take into account most of the strict CMOS process or TTL parameters:

■ For VIH:

- If VDD is between [1.8V~3.08V]; Use CMOS features but include TTL.
- If VDD is between [3.08V~3.6V]; Use TTL features but include CMOS.

For VIL:

- If VDD is between [1.8V~2.28V]; Use TTL features but include CMOS.
- If VDD is between [2.28V~3.60V]; Use CMOS features but include TTL.

• Output drive current

GPIO (universal input/output port) can absorb or output up to +/-12mA current. In the user application, the number of I/O pins must ensure that the drive current does not exceed the absolute maximum ratings.

• Output voltage

All I/O ports are CMOS and TTL compatible.

Table 1-19-2. IO Output Driving Ability Characteristics

Drive class	I _{OH} ⁽¹⁾ , V _{DD} =3.3V	I _{OL} ⁽¹⁾ , V _{DD} =3.3V	I _{OH} ⁽¹⁾ , V _{DD} =2.5V	Ι _{ΟL} ⁽¹⁾ , V _{DD} =2.5V	I _{ОН} ⁽¹⁾ , V _{DD} =1.8V	I _{OL} ⁽¹⁾ , V _{DD} =1.8V	Unit	
2	-2	2	-1.5	1.5	-1.2	1.2	mA	
4	-4	4	-3	3	-2.5	2.5	mA	
8	-8	8	-7	7	-5	5	mA	
12	-12	12	-11	11	-7.5	7.5	mA	
1. Cuerenteed by design, not tested in production								

1. Guaranteed by design, not tested in production.

Table 1-19-3. Output Voltage Characteristics								
Symbol	Parameter	Condition	Min	Max	Unit			
		$V_{DD} = 3.3 V,$ $I_{OL}^{(3)} = 2mA, 4mA, 8mA,$ and 12mA	V _{SS}	0.4				
V _{OL} ⁽¹⁾	Output low level	$V_{DD} = 2.5 V,$ $I_{OL}^{(3)} = 1.5 mA,3 mA,7 mA,$ and 11 mA	V _{SS}	0.4				
		$V_{DD} = 1.8 V,$ $I_{OL}^{(3)} = 1.2 mA, 2.5 mA, 5 mA,$ and 7.5 mA	V _{SS}	0.2 * V _{DD}	V			
V _{OH} ⁽²⁾		$V_{DD} = 3.3 V,$ $I_{OH}^{(3)} = -2mA, -4mA, -8mA,$ and -12mA	2.4	V _{DD}	v			
	Output high level	V _{DD} = 2.5 V, I _{OH} ⁽³⁾ = -1.5mA, -3mA, -7mA, and -11mA	2	V _{DD}				
		$V_{DD} = 1.8 V,$ $I_{OH}^{(3)} = -1.2mA, -2.5mA, -5mA,$ and -7.5mA	0.8 * V _{DD}	V _{DD}				

1. The current I_{IO} absorbed by the chip must always follow the absolute maximum rating, and the sum of I_{IO} (all I/O pins

and control pins) must not exceed lyss.

2. The current I_{IO} output from the chip must always follow the absolute maximum rating, and the sum of I_{IO} (all I/O pins and control pins) must not exceed I_{VDD}.

• Input/output AC Characteristics

The definitions and values of the input and output AC characteristics are given below.

GPIOx_DS.DSy[1:0] Configuration	Symbol	Parameter	Condition	Min	Max	Unit
		Maximum	$C_{L} = 5 pF, V_{DD} = 3.3 V$	-	64	
	f _{max(IO)out}	frequency ⁽²⁾	$C_L = 5pF, V_{DD} = 2.5V$	-	50	MHz
			$C_{L} = 5pF, V_{DD} = 1.8V$	-	30	
00		Output delay	$C_L = 5pF, V_{DD} = 3.3V$	-	3.66	
00 (2mA)	τ _{(IO)out}	(A to pad)	$C_L = 5pF, V_{DD} = 2.5V$	-	4.72	ns
(211A)			$C_{L} = 5pF, V_{DD} = 1.8V$	-	7.12	
	t _{(IO)in}	Input delay (pad to Y)	$V_{DDD} = 0.81V$ Input characteristics at 1.8V and 2.5V are derated	-	1.2	ns
		Maximum	$C_{L} = 10 pF, V_{DD} = 3.3 V$		64	
	f _{max(IO)out}	frequency ⁽²⁾	$C_{L} = 10 pF, V_{DD} = 2.5 V$	-	60	MHz
		nequency	$C_{L} = 10 pF, V_{DD} = 1.8V$		40	
	10 t _{(IO)out} The c (A to t _{(IO)in} Input to Y)	The output delay (A to pad)	$C_{L} = 10 pF, V_{DD} = 3.3 V$		3.5	
10			$C_{L} = 10 pF, V_{DD} = 2.5 V$	-	4.5	
(4mA)		() (to pad)	$C_{L} = 10 pF, V_{DD} = 1.8 V$		6.74	
		Input delay (pad to Y)	C_L = 50fF, V_{DD} = 2.97V, V_{DDD} = 0.81V Input characteristics at 1.8V and 2.5V are derated	-	1.2	ns
		Maximum	$C_{L} = 20 pF, V_{DD} = 3.3 V$		64	
	f _{max(IO)out}	frequency ⁽²⁾	$C_L = 20 pF, V_{DD} = 2.5 V$	-	50	MHz
		nequency	$C_{L} = 20 pF, V_{DD} = 1.8 V$		30	
		The output delay	$C_{L} = 20 pF, V_{DD} = 3.3 V$		3.42	
01	t _{(IO)out}	(A to pad)	$C_{L} = 20 pF, V_{DD} = 2.5 V$	-	4.73	
(8mA)		() ((0 puu)	$C_{L} = 20 pF, V_{DD} = 1.8 V$		6.53	
	t _{(IO)in} Input delay (pad to Y)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-	1.2	ns	
11		Maximum	$C_{L} = 30 pF, V_{DD} = 3.3 V$	-	64	
(12mA)	f _{max(IO)out} frequency ⁽²⁾	$C_L = 30 pF, V_{DD} = 2.5 V$	-	50	MHz	

Table 1-28. Input/output AC Characteristics

GPIOx_DS.DSy[1:0] Configuration	Symbol	Parameter	Condition	Min	Max	Unit
			$C_L = 30 pF$, $V_{DD} = 1.8 V$	-	30	
			$C_L = 30 pF$, $V_{DD} = 3.3 V$	-	3.34	
	t _{(IO)out}	t _{(IO)out} The output delay C ₁ (A to pad) C ₁	$C_L = 3pF, V_{DD} = 2.5V$	-	4.26	
			$C_L = 3pF, V_{DD} = 1.8V$	-	6.34	ns
	t _{(IO)in}	Input delay (pad to Y)	$C_L = 50 \text{fF}, V_{DD} = 2.97 \text{V}, V_{DDD} = 0.81 \text{V}$ Input characteristics at 1.8V and 2.5V are derated	-	1.2	. 115
1. The speed of the I/O port	can be confid		S DSv[1:0]			

The speed of the I/O port can be configured via GPIOx
 Guaranteed by design, not tested in production.

Figure 1-19. Definition of Input/Output AC Characteristics

1.20 MCU_NRST Pin Characteristics

The NRST pin input driver uses the CMOS process, which is connected to an unbreakable pull-up resistor

Table 1-20. NRST PIN Characteristics						
	O a se allistica se	B.61	_			

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V (1)	NDST input low lovel veltage	$V_{DD} = 3.3 V$	Vss	-	0.8	
VIL(NRST)	INKST Input low level voltage	$V_{DD} = 1.8 V$	Vss		0.3* V _{DD}	V
V (1)	NDST input high lovel veltage	$V_{DD} = 3.3 V$	2	-	V _{DD}	v
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	V _{DD} = 1.8 V	0.7* V _{DD}		V _{DD}	
N	NRST Schmidt trigger voltage	$V_{DD} = 3.3 V$	200	-	-	mV
V hys(NRST)	hysteresis	$V_{DD} = 1.8 V$	0.1* V _{DD}	-	-	V
R _{PU}	Weak pull-up equivalent resistance ⁽²⁾	$V_{DD} = 3.3 V$	30	50	70	KΩ
V _{F(NRST)} ⁽¹⁾	NRST input filter pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST input unfiltered pulse	-	300	-	-	ns

1. Guaranteed by design, not tested in production.

The pull-up resistor is designed as a real resistor in series for a switchable PMOS implementation. The resistance of this PMON/NMOS switch is very small (about 10%).

Figure 1-20. Recommended NRST Pin Protection

1.Resetting the network is to prevent parasitic resets.

2. The user must ensure that the NRST pin potential is below the maximum VIL(NRST), otherwise the MCU cannot be reset.

1.21 Timer (TIM) Characteristics

Symbol	Parameter	Condition	Min	Max	Unit
$t_{\text{res}(\text{TIM})}$	Timer time resolution		1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 64 MHz	15.625	-	ns
£	Timer CH1 to CH2 external clock		0	f _{TIMxCLK} /2	MHz
T _{EXT}	irequency	f _{TIMxCLK} = 64 MHz	0	32	MHz
Res _{TIM}	Timer resolution		-	16	位
	16 bit counter clock cycle when internal		1	65536	t _{TIMxCLK}
t _{COUNTER}	CIOCK IS SELECTED	f _{TIMxCLK} = 64MHz	0.015625	1024	μs
t	Maximum count		-	65536 x 65536	t _{TIMxCLK}
MAX_COUNT		f _{TIMxCLK} = 64MHz	-	67.109	S

Table 1-21-1. TIM1/8 Characteristics

Table 1-21-2. TIM2/3/4/5/6/7/9 Characteristics

Symbol	Parameter	Condition	Min	Max	Unit
	Timer time resolution	-	1	-	t _{TIMCLK}
^L res(TIM)		$f_{TIMCLK} = 32 \text{ MHz}$	31.25	-	ns
f	Timer CH1 to CH2 external clock	-	0	f _{TIMCLK} /2	MHz
IEXT	nequency	$f_{TIMCLK} = 32 \text{ MHz}$	0	16	MHz
Resтім	Timer resolution	-	-	16	bits
	16 bit counter clock cycle when internal	-	1	65536	t _{TIMCLK}
COUNTER	CIOCK IS SElected	$f_{TIMCLK} = 32 \text{ MHz}$	0.03125	2048	μs
	Movimum count	-	-	65536x65536	t _{TIMCLK}
•MAX_COUNT		f _{TIMCLK} = 32 MHz	-	134.218	S

Symbol	Parameter	Condition	Min	Мах	Unit
t	Timer time resolution	-	1	-	t _{LPTIMCLK}
^L res(LPTIM)		f _{LPTIMCLK} = 16MHz	62.5	-	ns
f	N2 to OUT outernal clock frequency	-	0	16	MHz
'EXT	INZ to OOT external clock frequency	f _{LPTIMCLK} = 16MHz	0	16	MHz
Reslptim	Timer resolution	-	-	16	bits
t	16 bit counter clock cycle when internal	-	1	65536	t _{LPTIMCLK}
COUNTER	clock is selected	f _{LPTIMCLK} = 16MHz	0.0625	4096	μs
t	Maximum count	-	-	65536x65536	t LPTIMCLK
t _{MAX_COUNT}		f _{LPTIMCLK} = 16MHz	-	268.435	S

Table 1-21-3. LPTIMER Characteristics

Table 1-21-4. IWDG Maximum and Minimum Counting Reset Time (LSI = 40kHz)

Prescaler	IWDG_PREDIV.PD[2:0]	Min ⁽¹⁾ IWDG_RELV.REL[11:0] = 0	Max ⁽¹⁾ IWDG_RELV.REL[11:0] = 0xFFF	Unit
/4	000	0.1	409.6	
/8	001	0.2	819.2	
/16	010	0.4	1638.4	
/32	011	0.8	3276.8	ms
/64	100	1.6	6553.6	
/128	101	3.2	13107.2	
/256	11x	6.4	26214.4	
1. Guarante	ed by design, not tested in	production.		

Table 1-21-5. WWDG Maximum and Minimum Counting Reset Time (APB1 PCLK1 = 16MHz)

Prescaler	WWDG_CFG.TIMERB [2:0]	Min ⁽¹⁾ WWDG_CFG.W[13:0] = 0x3F	Max ⁽¹⁾ WWDG_CFG.W[13:0] = 0x3FFF	Unit
/1	00	0.256	16.38	
/2	01	0.512	32.77	
/3	10	1.024	65.54	ms
/4	11	2.048	7131.07	
1. Guarantee	ed by design, not tested in p	production.		

1.22 I2C Interface Characteristics

The I2C interface conforms to the standard I2C communication protocol, but has the following limitations: SDA and SCL are not "true" open leak pins, and when configured for open leak output, the PMOS tube between the pin and VDD is closed, but still exists.

Cumbal	Donomotor	Standar	d Mode	Fast Mode		Fast+ Mode		Mada
Зутвої	Parameter	Min	Max	Min	Max	Min	Max	woae
f _{SCL}	I2C interface frequency	0	100	0	400	0	1000	KHz
th _(STA)	Start condition hold time	4.0	-	0.6	-	0.26	-	μs
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	0.5	-	μs
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	0.26	-	μs
t _{su(STA)}	Repeat start condition setup time	4.7	-	0.6	-	0.26	-	μs
t _{h(SDA)}	SDA data hold time	-	3.4	-	0.9	-	0.4	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	50	-	ns
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	20 + 0.1 Cb	300	-	120	ns
$\begin{array}{c} t_{f(\text{SDA})} \\ t_{f(\text{SCL})} \end{array}$	SDA and SCL fall time	-	300	20 + 0.1 Cb	300	Ŧ	120	ns
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	0.26	-	μs
t _{w(STO:STA)}	Time from stop condition to start condition (bus idle)	4.7	-	1.3		0.5	-	μs
Cb	Capacitive load per bus	-	400	-	400	-	100	pf
t _{v(SDA)}	Data validity time	-	3.45		0.9	-	0.45	μs
t _{v(ACK)}	Response time	-	3.45	-	0.9	-	0.45	μs
1 Guarantee	d by design not tested in production						•	

Table 1-22-1, I2C Interface Characteristics

1. Guaranteed by design, not tested in production.

2. To achieve the maximum frequency of standard mode I2C, fPCLK1 must be greater than 2MHz. To achieve the maximum frequency of fast mode I2C, f_{PCLK1} must be greater than 4MHz.

Figure 1-22-2. I2C Bus AC Waveform and Measuring Circuit (1)

1. The measuring point is set at the CMOS level: 0.3VDD and 0.7VDD.

2. The pull-up resistance depends on the I2C interface speed.

3. The resistance value depends on the actual electrical characteristics. The signal line can be directly connected without serial resistance.

1.23 SPI/I²S Interface Characteristics

Symbol	Parameter	Condition		Min	Мах	Unit
f _{SCLK}		Master mode		-	16	MI 1-
$1/t_{c(SCLK)}$	SPT Clock frequency	Slave mode		-	16	IVITIZ
$t_{r(\text{SCLK})} t_{f(\text{SCLK})}$	SPI clock rise and fall time	Load capacitance: C = 30pF		-	8	ns
DuCy(SCK)	SPI from the input clock duty cycle	SPI Slave mode		45	55	%
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode		4t _{PCLK}	-	ns
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode		2t _{PCLK}		ns
t _{w(SCLKH)} ⁽¹⁾ t _{w(SCLKL)} ⁽¹⁾	SCLK high and low time	Master mode	Master mode		t _{PCLK} +2	ns
. (1)		Mastaria	SPI1	6.2	·	
t _{su(MI)} (1)	Data entry setup time	Master mode	SPI2	5	-	ns
. (1)			SPI1	6.3	-	
t _{su(SI)} ("/		Slave mode	SPI2	3	-	
t _{h(MI)} ⁽¹⁾	Dete entry extur time	Master mode		5	-	20
t _{h(SI)} ⁽¹⁾	Data entry setup time	Slave mode		5.2	-	115
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode , f _{PCLK} = 2	0 MHz	0	3 t _{PCLK}	ns
$t_{dis(SO)}^{(1)(3)}$	Disable time of data output	Slave mode		2	10	ns
+ (1)		Slave mode (after enable	SPI1	-	20	
L _V (SO)	Valid time of data output	edge)	SPI2	-	17	20
t (1)		Master mode (after enabling	SPI1	-	5	115
ι _{ν(MO)} ,		edge)	SPI2	-	4	
$t_{h(SO)}^{(1)}$	Data autout hold time	Slave mode (after enable	e edge)	6.2	-	20
t _{h(MO)} ⁽¹⁾	- Data output hold time	Master mode (after enabli	ng edge)	-1	-	ns

Table 1-23-1. SPI Characteristc⁽⁴⁾

1. Guaranteed by design, not tested in production.

The minimum value represents the minimum time to drive the output, and the maximum value represents the maximum time to get the data correctly.

The minimum value represents the minimum time for turning off the output and the maximum value represents the maximum time for placing the data line in a high resistance state.

Figure 1-23-1. SPI Timing Diagram-slave Mode and CPHA=0

1. The measuring point is set at the CMOS level: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Figure 1-23-2. SPI Timing Diagram-Slave Mode and CPHA=1 (1)

1. The measuring point is set at the CMOS level: 0.3 V_{DD} and 0.7 V_{DD} .

Figure 1-23-3. SPI Timing Diagram-Master Mode (1)

Symbol	Parameter	Condition		Min	Max	Unit
DuCy(SCK)	I ² S clock duty cycle	I2S Slave mode		30	70	%
f _{CLK}	129 alook fraguanov	Master mode (32 bit)		-	64*Fs ⁽³⁾	MHz
1/t _{c(CLK)}	I-S clock frequency	Slave mode (32 bit)		-	64*Fs ⁽³⁾	
t _{r(CLK)}	I ² S clock rise and fall time	Load capacitance: CL = 50pF		-	8	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode	I2S1	5.3	-	1
			I2S2	5	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Master mode		0	-	
t _{su(WS)} ⁽¹⁾	WS setup time	Slave mode	I2S1	5.5		ns
			I2S2	5	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode	I2S1	7	-	
			I2S2	3.6	-	
t _{w(CLKH)} ⁽¹⁾	CLK high and low times	Master mode, f _{PCLK} = 16MHz, audio 48kHz		312.5	-	

Table 1-23-2. I2S Characteristics (1)

Symbol	Parameter	Condition		Min	Max	Unit
t _{w(CLKL)} ⁽¹⁾				345	-	
$t_{su(SD_MR)}^{(1)}$		The second second	I2S1	.5	-	
	Data entry setup time	The main receiver	1282	5	-	-
$t_{\text{su}(\text{SD}_\text{SR})}^{(1)}$		Slave mode	I2S1	2.5	-	
			1282	2.5	-	
th(SD_MR) ⁽¹⁾⁽²⁾	Data entry hold time	Master receiver	I2S1	4.4		
			1282	5.2		
th(SD_SR) ⁽¹⁾⁽²⁾		Slave mode	I2S1	4.5		
			1282	5.2	-	
t _{v(SD_ST)} ⁽¹⁾⁽²⁾	Valid time of data output	Slave transmitter (after the enabled edge)	I2S1		22	
			1282		22	
t _{h(SD_ST)} ⁽¹⁾	Data output hold time	Slave generator (after enable edge)	I2S1	4	-	
			1282	4	-	
t _{v(SD_MT)} ⁽¹⁾⁽²⁾	Valid time of data output	Master generator (after enabling edge)	1281	-	5.6	
			1282	-	4.5	
t _{h(SD_MT)} ⁽¹⁾	Data output hold time	Master generator (after enabling edge)		0.5	-	

1. Guaranteed by design, not tested in production.

2. Depends on fPCLK. For example, if fPCLK=16MHz, then TPCLK=1/fPCLK=125ns.

3. Audio sampling rate.

Figure 1-23-4. I²S Slave Mode Timing Diagram (Philips Protocol) ⁽¹⁾

- 1. The measuring point is set at the CMOS level: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$
- 2. Send/receive of the last byte. There is no least significant send/receive before the first byte.

Figure 1-23-5. ¹²S Master Mode Timing Diagram (Philips protocol) ⁽¹⁾

- 1. The measuring point is set at the CMOS level: $0.3V_{DD}$ and $0.7V_{DD}$.
- 2. Send/receive of the last byte. There is no least significant send/receive before the first byte.

1.24 USB Characteristics

USB (full speed) interface is certified by the USB-IF.

Table 1-24-1. USB Startup Time

Symbol	Parameter	Max	Unit		
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs		
1. Guaranteed by design, not tested in production.					

Table 1-24-2. USB DC Characteristics

Symbol	Parameter	Condition	Min	Max	Unit		
Input level							
V _{DD}	USB operating voltage ⁽²⁾		3.0 ⁽³⁾	3.6	V		
V _{DI} ⁽⁴⁾	Differential input sensitivity	I (USBDP and USBDM)	0.2	-			
Vcm ⁽⁴⁾	Differential common model range	Contains VDI ranges	0.8	2.5	V		
Vse ⁽⁴⁾	Single-end receiver threshold		1.3	2.0			
Output level							
Vol	Static output low level	1.5K Ω RL is connected to 3.6V ⁽⁵⁾	-	0.3	V		
Vон	Static output high level	15K Ω RL is connected to $V_{SS}^{(5)}$	2.8	3.6	v		
1. All voltage measurements are based on the ground cable at the device end.							

2. USB operating voltage is 3.0~3.6V in order to be compatible with USB2.0 full speed electrical specification.

3. Based on comprehensive evaluation, not tested in production.

4. R_L is the load attached to the USB drive.

Figure 1-24. USB Timing: Definition of Rise and Fall Time of Data Signal

|--|

Symbol	Parameter	Condition	Min	Max	Unit		
tr	Rise time ⁽²⁾	C _L ≤ 50pF	4	20	ns		
t _f	Fall time ⁽²⁾	C _L ≤ 50pF	4	20	ns		
t _{rfm}	Rise and fall time match	t _r / t _f	90	111.1	%		
1. Guaranteed by design, not tested in production.							

1.25 ADC Characteristic

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
Vdda	The power supply voltage	Use an external reference voltage	1.8	-	3.6	V	
V _{REF+}	Positive reference voltage		1.8	-	V _{DDA}	V	
f _{ADC}	ADC clock frequency		-	-	64	MHz	
		1.8V ≤V _{DD} ≤3.6V,12bit resolution	-	-	4.57		
f _s (1)	Sampling rate	1.8V ≤V _{DD} ≤3.6V, 10bit resolution	-	-	5.33	MHz	
		$1.8V \le V_{DD} \le 3.6V$, 8bit resolution	-	-	6.4		
		1.8V ≤V _{DD} ≤3.6V, 6bit resolution	-	-	8		
V _{AIN}	Switching voltage range ⁽²⁾		0 (V _{SSA} or V _{REF-} Connect to ground)	-	V _{REF+}	V	
R _{ADC} ⁽¹⁾	Sampling switch resistance	Fast channel	-	-	0.2	ΚΩ	
R _{ADC} ⁽¹⁾	Sampling switch resistance	Slow channel	-	-	0.5	ΚΩ	
C _{ADC} ⁽¹⁾	Internal sampling and holding capacitors		-	5	-	pF	
SNDR	Singal noise distortion ration		-	65	-	dBFS	
T _{cal}	The calibration time		82		1/f _{ADC}		
		f _{ADC} = 64MHz(fast channel)	0.0234	-	9.4		
ts ⁽¹⁾	Sampling time	f _{ADC} = 64MHz(slow channel)	0.0703	-	9.4	us	
Te (1)	Compliant evelop	Fast track	1.5	-	601.5	1/5.00	
13.7		The slow channel	4.5	-	601.5	TTADC	
tstab ⁽¹⁾	Power on time		6	10	20	μs	
tconv ⁽¹⁾⁽³⁾	Total conversion time (including sampling time)	12bit resolution	14~614 (San 6.5/8.5/10.5/ approximatic	npling T _S + 12.5 for su n)	- Iccessive	1/f _{ADC}	

Table 1-25-1. ADC Characteristic

Symbol	Parameter	Condition	Min	Тур	Max	Unit
1. Guaranteed b	y design, not tested in pro	duction.				
2. VREF+ is con	nected internally to VDDA	, and VREF- is connected intern	ally to VSSA.			
3. Single conver	sion mode has 3 more 1/f	ADC than continuous conversior	mode			
Formula 1: maxi	imum RAIN formula					
$R_{AIN} < \frac{1}{f_{ADC} \times C_A}$	$\frac{T_{S}}{ADC} \times \ln(2^{N+2}) - R_{ADC}$					
The above form 1/4 LSB. Where	ula (Formula 1) is used to N=12(representing 12-bit	determine the maximum externative resolution).	al impedance so	that the er	ror can be l	ess than

Input	Resolution	Rin(kΩ)	Typ of Minimum Sampling Time (ns)	Input	Resolution	Rin(kΩ)	Typ of Minimum Sampling Time (ns)
		0	11			0	19
		0.05	12			0.05	21
		0.1	14			0.1	23
		0.2	20			0.2	30
		0.5	38			0.5	48
fast channel	12-bit	1	64	slow channel	12-bit	1	77
		5	276			5	310
		10	543			10	607
		20	1082		, i	20	1207
		50	2788		·	50	3144
		100	6162			100	8244
		0	10			0	17
		0.05	11			0.05	18
		0.1	13			0.1	20
		0.2	17			0.2	25
		0.5	32		10-bit	0.5	40
fast channel	10-bit	1	54	slow channel		1	64
		5	229			5	257
		10	448			10	499
		20	888			20	983
		50	2223			50	2457
		100	4500			100	5001
		0	9			0	14
		0.05	10			0.05	16
		0.1	11			0.1	17
		0.2	14	-		0.2	21
		0.5	26			0.5	33
fast channel	8-bit	1	43	slow channel	8-bit	1	52
		5	183	-		5	206
		10	358	-		10	399
		20	707	4		20	783
		50	1759	-		50	1941
		100	3523			100	3887
		0	8	-		0	12
		0.05	8	-		0.05	13
		0.1	9	-		0.1	14
		0.2	12	-		0.2	17
	o I ''	0.5	20			0.5	25
fast channel	6-bit	1	33	slow channel	6-bit	1	40
		5	138	-		5	156
		10	269	-		10	300
		20	531	-		20	588
	F	50	1310	-		50	1451
1 Guaranteed	by design not t	100 Asted in product	2021			100	2894
2. Typical value	es are obtained	when I _A =25 and	a vDD=3.3V.				

Table 1-25-2. ADC Sampling Time (1)(2)

Symbol	Parameter	Test Condition	Тур	Max ⁽³⁾	Unit
ET	Comprehensive error ⁽⁴⁾	f _{HCLK} = 64 MHz.	±1.3	-	
EO	Offset error ⁽⁵⁾	$f_{ADC} = 64 \text{ MHz}$, sample Rate = 1.75m SPS,	±1	-	
ED	Differential linear error	Measurements are made after the ADC is calibrated	±0.7	-	LSB
EL	Integral linear error	$V_{REF+} = V_{DDA}$	±0.8	-	

1. The DC accuracy of the ADC is measured after internal calibration.

2. ADC accuracy versus reverse injection current: It is necessary to avoid injecting reverse current on any standard analog input pin, as this can significantly reduce the accuracy of the conversion being performed on the other analog input pin. It is recommended to add a Schottky diode (between pin and ground) to standard analog pins that may generate reverse injection current.

3. The forward injection current does not affect the ADC accuracy as long as it is within the range of $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$.

4. Based on comprehensive evaluation, not tested in production.

Figure 1-25-2. Typical Connection Diagram Using Adc

1. Cparasitic indicates parasitic capacitance on PCB (related to welding and PCB layout quality) and pads (approximately 7pF). A larger Cparasitic value would reduce the accuracy of the conversion and the solution was to reduce f_{ADC} from medine.

Note: Input voltage less than -0.2V is prohibited on ADC channel

1. V_{REF+} and V_{REF-} are internally connected to VDDA and VSSA.

1.26 Internal Reference Source (VREFBUFF) Electrical Parameters

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vdda	Analog supply voltage	Normal mode	2.4	-	3.6	V
Vrefbuf_out	Voltage reference output	Normal mode	-	2.048	-	V
Idda	VREFBUF consumption from VDDA	$I_{load} = 0 \ \mu A$	-	600	-	μA

Table 1-26. VREFBUFF Characteristic

tstart ⁽¹⁾	Start-up time	-	1	-	-	us
1. Guaran	teed by design, not tested in production.					

1.27 Operational Amplifier (OPAMP) Electrical Parameters

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vdda	Analog supply voltage	-	1.8	-	3.6	V
CMIR	Common mode voltage input range	-	0	-	Vdda	V
VIOFFSET	Input offset voltage (after calibration)	-	-	±1	±3.5	mV
Δ VIOFFSET	Input offset voltage temperature drift	-	-	10		UV/°C
ILOAD	Drive current	-	-		0.5	mA
Idda	Operational amplifier current consumption	No load, quiescent mode	-	Y	1.5	mA
TS_OPAMP_VOUT	ADC sampling time as opamp output	-	400		-	ns
CMMR	Common mode rejection ratio	-		84	-	dB
PSRR	Power rejection ratio		-	100	-	dB
GBW	Gain bandwidth	-	•	4	-	MHz
SR	Conversion rate	-	-	2.5	-	V/us
RLOAD	Minimum impedance load	-	4	-	-	KΩ
CLOAD	Maximum capacitive load		-	-	50	pF
İ STARTUP	Start-up setup time	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega,$ Follower configuration	-	3	-	μs
PGA Gain error	Programmable gain error	Input signal amplitude> 100mV	-	±2.5	-	%
	$2 \sim$	PGA Gain = 2, Cload = 50pF, Rload = 4 KΩ	-	2	-	
		PGA Gain = 4, Cload = 50pF, Rload =4 KΩ	-	1	-	
PGA BW	PGA bandwidth for different noninverting gain	PGA Gain = 8, Cload = 50pF, Rload = 4 KΩ	-	0.5	-	MHz
		PGA Gain = 16, Cload = 50pF, Rload = 4 KΩ	-	0.25	-	
		PGA Gain = 32, Cload = 50pF, Rload = 4KΩ	-	0.125	-	
en	Voltage noise density	@ 1KHz, Output loaded with 4 KΩ	-	111	-	nV/√Hz

Table 1-27. OPAMP Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		@ 10KHz, Output loaded with 4 KΩ	-	44	-	
1. Guaranteed by desi	gn, not tested in production.					

1.28 Comparator 1(COMP1) Electrical Parameters

Table 1-26-1. COMPT Characteristics							
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V_{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
V _{IN}	Input voltage range	-	0	-	V _{DDA}	v	
$t_{STAR}^{(1)}$	Comparator startup setup time	-	-	10	-	us	
t _D	Propagation delay for 200 mV step with 100 mV overdrive	-	-	70		ns	
VOFFSET	Comparator input offset error	Full common mode range	-	±5	±20	mV	
	Comparison hystorecia	No hysteresis		0	-		
14		Low hysteresis	1	10	-	m\/	
V hys	Companson hysteresis	Medium hysteresis	ł	20	-	IIIV	
		High hysteresis		30	-		
		Static	-	45	-		
I _{DDA}	Comparator current consumption	With 50 kHz ±100 mV overdrive square signal	-	47	-	μA	
1. Guarante	ed by design, not tested in production						

Table 1-28-1. COMP1 Characteristics

Table 1-28-2. COMP1 Low Power Mode Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
V _{IN}	Input voltage range	-	0	-	V _{DDA}	v	
t _{START} ⁽¹⁾	Comparator startup setup time	-	-	15	-	us	
t _D	Propagation delay for 200 mV step with 100 mV overdrive	VDDA>=2.7V	-	300	-	ns	
VOFFSET	Comparator input offset error	VDDA=3V,25°C	-	±10	-	mV	
	No hysteresis	-	0	-			
	Comparison hysteresis	Low hysteresis	-	10	-	m)/	
V hys		Medium hysteresis	-	20	-	mv	
		High hysteresis	-	30	-		
		Static	-	10	-		
I _{DDA}	Comparator current consumption	With 50 kHz ±100 mV overdrive square signal	-	11.5	-	μA	
1. Guaranteed by design, not tested in production.							

1.29 Comparator 2(COMP2) Electrical Parameters

Table 1-29.	COMP2	Characteristics
-------------	-------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
V _{IN}	Input voltage range	-	0	-	V _{DDA}	v	
t _{START} ⁽¹⁾	Comparator startup setup time	-	-	10	-	us	
t _D	Propagation delay for 200 mV step with 100 mV overdrive	-		70	-	ns	
VOFFSET	Comparator input offset error	Full common mode range	-	±10	-	mV	
		No hysteresis	-	0	-		
N	Comparator hysteresis	Low hysteresis	-	10	-	m)/	
V hys		Medium hysteresis	-	20			
		High hysteresis	-	30			
		Static	-	45	-		
I _{DDA}	Comparator current consumption	With 50 KHz ±100 mV Overdrive Square Signal		47	-	μA	
1.Guaranteed by design, not tested in production.							

1.30 12-bit DAC Electrical Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Annotation
V_{DDA}	Analog supply voltage	2.4	-	3.6	V	
V_{REF+}	The reference voltage	2.4		3.6	V	$V_{\text{REF+}}$ must always be below V_{DDA}
V _{SSA}	Ground wire	0	-	0	V	
R∟	Load resistance when the buffer is open	5	-	-	ΚΩ	Minimum load resistance between DAC_OUT and V _{SSA}
CL	The load capacitance		-	50	pF	The maximum capacitance on the DAC_OUT pin
I _{DD}	In work mode DAC DC consumption (VDDA +VREF+)	-	425	600	μA	No load. The median value is 0x800
I _{DDQ}	In shut down mode DAC DC consumption (V _{DDA} +V _{REF+})	-	5	-	nA	No load
DAC_OUT	The low-end DAC_OUT voltage when the buffer is closed	VSS+1LSB	-	-		
Min	Min The low-end DAC_OUT voltage when the buffer is 0.2	-	-	V	Give the largest DAC output span. When VREF+=3.6V, corresponding to	
DAC_OUT	The low-end DAC_OUT voltage when the buffer is closed	-	-	VREF+ -5LSB	v	When VREF+=2.4V, corresponding to 12-bit input value 0x155~0xEAB.
Max	The low-end DAC_OUT voltage when the buffer is opened	-	-	VREF+- 0.2		
DNL	Differential non linearity (Difference between two consecutive code)	-	±2	-	LSB	The DAC configuration is 12 bits
INL	Integral non linearity (difference between measured value at Code I and the value at Code i on a line drawn between Code 0	-	±7	-	LSB	The DAC configuration is 12 bits

Table 1-30. DAC Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Unit	Annotation
	and last Code 4095)					
	Offset error	-	±15	-	mV	The DAC configuration is 12 bits
The offset	(difference between measured value at Code (0x800) and the ideal value = VREF+/2)	-	±18	-	LSB	When V _{REF+} is 3.6V, the DAC is configured as 12 bits
Gain error	Gain error	-	±0.5	-	%	The DAC is configured as 12 bits
Amplifier Gain	Amplifier gain in open loop	80	85	-	dB	5KΩ load (maximum load), input midvalue 0x800
t _{settling}	Settling time (full scale: for a 12-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB)	-	5	7	μs	C _{LOAD} ≤50pF R _{LOAD} ≥5KΩ
Update rate	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	C _{LOAD} ≤50pF R _{LOAD} ≥5KΩ
t _{wakeup}	Wake up time from closed state (set CHxEN bit in DAC control register)	-	6.5	10	μs	$C_{LOAD} \le 50 pF$, $R_{LOAD} \ge 5K\Omega$ The input code is between the minimum and maximum possible values
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} ≤ 50pF
1. Guaranteed by design, not tested in production.						

1.31 Liquid Crystal Display Driver (Segment LCD) Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VLCD	LC	CD external voltage	-	-	3.6	
V _{LCD0}	LCD int	ernal reference voltage 0	-	2.588	-	
VLCD1	LCD int	ernal reference voltage 1	-	2.728	-	
VLCD2	LCD int	ernal reference voltage 2	-	2.863	-	
V _{LCD3}	LCD int	ernal reference voltage 3	-	3.013	-	V
V _{LCD4}	LCD int	ernal reference voltage 4	-	3.154	-	
V _{LCD5}	LCD int	ernal reference voltage 5	-	3.283	-	
VLCD6	LCD internal reference voltage 6			3.422	-	
VLCD7	LCD int	ernal reference voltage 7	-	3.572	-	
	V _{LCD} external capacitance	Buffer OFF	-	1	-	υE
Cext		Buffer ON	-	1	-	μι
ILCD	Supply current from V _{DD} at V _{DD} = 3.0 V	Buffer OFF	-	3	-	μΑ
h# 00	Supply current from	Buffer OFF (BUFEN = 0, PON = 0)	-	0.5	-	
IVLCD	V_{LCD} ($V_{LCD} = 3 V$)	Buffer ON (BUFEN = 1, 1/2 Bias)	-	0.6	-	μΑ

Table 1-31. LCD Controller Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Buffer ON (BUFEN = 1, 1/3 Bias)	-	0.8	-	
		Buffer ON (BUFEN = 1, 1/4 Bias)	-	1	-	
R _{HN}	Total High Resistor	Total High Resistor value for Low drive resistive network			-	MΩ
R _{LN}	Total Low Resistor	Total Low Resistor value for High drive resistive network			-	KΩ
V ₄₄	Segment/C	ommon highest level voltage	-	VLCD	-	
V ₃₄	Segment	Common 3/4 level voltage	-	3/4 VLCD	-	
V ₂₃	Segment	Common 2/3 level voltage	-	2/3 V _{LCD}	-	
V ₁₂	Segment	Common 1/2 level voltage	-	1/2 V _{LCD}		V
V ₁₃	Segment	Segment/Common 1/3 level voltage		1/3 VLCD		
V ₁₄	Segment	Common 1/4 level voltage	-	1/4 VLCD	-	
V ₀	Segment/C	common lowest level voltage	-	0	-	

1.32 Temperature Sensor (TS) Characteristics

Table 1-32. Temperature Sensor Characteristics

Symbol	Parameter	Min	Тур	Max	Unit		
TL(1)	V _{SENSE} linearity with temperature	-	±1	±4	°C		
Avg_Slope ⁽¹⁾	Average slope	-	-4.0	-	mV/ºC		
V ₂₅ ⁽¹⁾	Voltage at 25°C	-	1.32	-	V		
t _{start} ⁽¹⁾	Startup time	-	10	20	μs		
T _{S_temp} ⁽²⁾⁽³⁾	ADC sampling time when reading the tempearture	8.3	-	-	μs		
1. Based on comprehensive evaluation, not tested in production.							
2. Guaranteed by design, not tested in production.							

3. Shortest sampling time can be determined in the application by multiple iterations.

2 Pin Description

Figure 2-1. CMT2391F128 Pin Diagram

Table 2-1. CMT2391F128 Pin Description

Pin No.	Pin Name	I/O	Description
1	AGND	I	Analog GND
2	RXP	I	RX sinal input P
3	RXN	I	RX signal input N
4	NC		No connection
5	ТХ	0	Output
6	PA_VIO_VBAT	Ю	IO VDD
7	RF_GPIO4	Ю	IO VDD
8	RF_GPIO5_RST	Ю	Configurable
9	RF_DVDD	I	RF module digital VDD
10	RF_AVDD	I	RF circuit VDD
11	RF_DC_VSW	I	DCDC
12	RF_VBAT	I	Analog VDD
13	MCU_VLCD	S	
14	MCU_VDD	S	

15	PC13/TAMPER/RTC	Ю	TIM1_CH1N LCD_SEG35 EVENTOUT TAMP1-RTC RTC_OUT WKUP2
16	PC14/OSC32_IN	10	OSC32_IN
17	PC15/OSC32_OUT	10	OSC32_OUT
18	PD14/OSC_IN	Ю	USART2_TX I2C2_SDA TIM1_CH3N OSC_IN
19	PD15/OSC_OUT	Ю	USART2_RX I2C2_SCL
20	MCU_NRST	I	MCU reset port, low level effective
21	MCU_VDDA	S	
22	PA0	IO	USART2_CTS LPUART_RX TIM2_CH1 TIMER2_ETR TIM5_CH1 TIM8_ETR SPI1_MISO I2S1_MCK EVENTOUT COMP1_OUT ADC_IN1(8) COMP1_INP WKUP1 TAMP2-RTC
23	PA1	ю	USART2_RTS LPUART_TX TIM5_CH2 TIM2_CH2 LCD_SEG0 EVENTOUT ADC_IN2(8) COMP1_INP OPAMP1_VINP
24	PA2	ю	USART2_TX TIM5_CH3 TIM2_CH3 LCD_SEG1 I2C2_SDA COMP2_OUT EVENTOUT ADC_IN3(8) OPAMP1_VOUT COMP1_INP(6) COMP2_INM
25	PA3	IO	USART2_RX LPUART_RX TIM5_CH4 LCD_SEG2 I2C2_SCL EVENTOUTADC_IN4(8) COMP1_INP(7) COMP2_INP OPAMP1_VINM

		-	
			USART2_CK
			LPUART_TX
			I2C1_SCL
			SPI1_NSS
			LISART1 TY
26	PA4	10	EVENTOUT
20	174	10	DAC OUT
			ADC IN5(8)
			COMP1_INM
			COMP2_INM
			OPAMP1_VINP
			OPAMP2_VINP
			SPI1_SCK
			1201_5DA 1251_CK
			USART1 RX
			EVENTOUT
27	PA5	IO	ADC IN6(9)
			COMP1_INM
			COMP2_INM
			OPAMP1_VINP
			OPAMP2_VINM
			LPUART_CTS
			SPI1_MISO
28	PA6	Ю	LCD SEG3
			COMP2 OUT
			EVENTOUT
			ADC_IN7(9)
			OPAMP2_VOUT
			COMP2_INM
			3PT1_MUSI 1291_SD
			TIM1_CH1N
			TIM8_CH1N
			TIM3 CH2
00	PA7		LCD_SEG4
29		IO IO	COMP2_OUT
			EVENTOUT
			ADC_IN8(9)
<u> </u>			
			TIM3 CH3
			TIM8 CH2N
20	DDO		LCD_SEG5
30	PBU	IU IU	UART4_TX
			EVENTOUT
			ADC_IN9(9)
			OPAMP2_VINM
			TIM8_CH3N
31	PB1	IO	I CD_SEG6
			UART4 RX
			EVENTOUT
			ADC_IN10(9)
			LPTIM_OUT
32	PB2	IO	TIM9_ETR
			EVENTOUT

			USART3_TX
33	DB10	10	
	FDIV	10	
			EVENTOLIT
			COMP1 INP
			USART3 RX
			LPUART_RX
24	DD11	10	I2C2_SDA
34	FDII	10	TIM2_CH4
			LCD_SEG11
			EVENTOUT
			SPI2_NSS
			1252_WS
35	PB12	10	TIM1 BKIN
55	1012	10	
			LCD_SEG12
			TIM9 CH1
			EVENTOUT
			SPI2_SCK
			12S2_CK
			USART3_CTS
			I2C2_SCL
36	PB13	IO	LPUART_CTS
			TIM1_CH1N
			SPI2 MISO
			12S2 MCK
			TIM1 CH2N
	PB14		USART3 RTS
			I2C2_SDA
37		S	LPUART_RTS
			LCD_SEG14
			TIM9_CH3
			EVENTOUT
			1252 SD
38	PB15	10	TIM1 CH3N
			LCD SEG15
			TIM9_CH4
			EVENTOUT
39	MCU_VDD	S	
			USART1 CK
			I2C2_SMBA
			TIM1_CH1
			LCD_COM0
			I2C2_SDA
40	PA8	IO	SPI1_NSS
			I2S1_WS
—			
			USART1 TX
			I2C2 SCL
41	PA9	IO	TIM1_CH2
			LCD_COM1
			EVENTOUT

42	PA10	Ю	USART1_RX I2C2_SDA SPI1_SCK SPI2_SCK I2S1_CK I2S2_CK TIM1_CH3 LCD_COM2 EVENTOUT
43	PA11/USB_DM	Ю	SPI2_MISO I2S2_MCK CAN_RX TIM1_CH4 COMP1_OUT EVENTOUT USB_DM COMP2_INP
44	PA12/USB_DP	Ю	USART1_RTS SPI2_MOSI I2S2_SD CAN_TX TIM1_ETR COMP2_OUT EVENTOUT USB_DP COMP1_INP
45	PA13	Ю	SWDIO-JTMS SPI2_NSS I2S2_WS EVENTOUT
46	MCU VDD	S	
47	PA14	ю	SWCLK-JTCK USART2_CK I2C1_SDA COMP2_OUT
48	PA15	Ю	JTDI USART2_CTS I2C1_SCL SPI2_NSS I2S2_WS TIM2_CH1 TIM2_ETR LCD_SEG17 LCD_COM3 EVENTOUT
49	PB3	Ю	USART2_RTS SPI1_SCK I2S1_CK TIM2_CH2 JTDO-TRACESWO LCD_SEG7 EVENTOUT COMP1_INP COMP2_INM
50	PB4	IO	USART2_TX SPI1_MISO I2S1_MCK TIM3_CH1 LCD_SEG8 UART5_TX EVENTOUT NJTRST COMP1_INP

51	PB5	Ю	USART2_RX I2C1_SMBA SPI1_MOSI I2S1_SD TIM3_CH2 LCD_SEG9 UART5_RX LPTIM_IN1 EVENTOUT COMP1_INM
52	PB6	IO	USART1_TX LPUART_TX I2C1_SCL SPI1_NSS I2S1_WS TIM1_CH2N TIM4_CH1 SPI2_SCK I2S2_CK LPTIM_ETR COMP1_OUT FVENTOUT
53	PB7	Ю	USART1_RX LPUART_RX I2C1_SDA TIM4_CH2 EVENTOUT LPTIM_IN2 PVD_IN COMP2_INP
54	PD0/BOOT0	IO	LCD_SEG32
55 56	PB8 PB9	10 10	I2C1_SCL CAN_RX TIM4_CH3 LCD_SEG16 USART1_TX UART5_TX COMP1_OUT EVENTOUT I2C1_SDA CAN_TX TIM4_CH4 LCD_COM3 UART5_RX
			COMP2_OUT EVENTOUT
57	MCU_VDD	S	
58	PD4/RF_SCK	Ю	SPI1_SCK I2S1_CK LCD_SEG28 LCD_SEG40(6) LCD_COM4(6) COMP1_INM
59	PD5/RF_SDO	Ю	SPI1_MISO I2S1_MCK LCD_SEG29 LCD_SEG41(6) LCD_COM5(6) COMP1_INP
60	PD6/RF_SDI	IO	SPI1_MOSI I2S1_SD LCD_SEG30 LCD_COM6(6) TRACED2 COMP2_INM

61	PD7/RF_CSB	IO	SPI1_NSS I2S1_WS LCD_SEG31 LCD_COM7(6) TRACED3 COMP2_INP
62	RF_XI	I	晶体电路输入
63	RF_XO	0	晶体电路输出
64	RF_GPIO2	Ю	可配置
65	RF_GPIO3	Ю	可配置
66	RF_NIRQ	I	可配置
67	PD1/RF_GPIO1	Ю	可配置
68	PD3/RF_GPIO0	Ю	可配置

3 Chip Frame

Figure 3-1. Functional Block Diagram

CMT2391F128 is an integrated Sub-G high-performance wireless transceiver single chip. The internal system block diagram of CMT2391F128 is shown in the above figure 3-1.

• Low power high performance Sub-G transceiver

Sub-G wireless transceiver supports 113 to 960 MHz, OOK, (G)FSK, 4 (G)FSK and other modulation modes, low power consumption, high performance, suitable for all kinds of wireless communication applications. The product belongs to CMOSTEK Next GenRFTM series, which includes transmitters, receivers and transceivers and other complete product series.

• ARM Cortex-M4FP high performance 32e bit micro-processor

The CMT2391F128 controller uses a 32-bit ARM Cortex®-M0 kernel, with a maximum operating frequency of 64MHz, up to 128 KB encrypted Flash memory, and a maximum of 24 KB SRAM. It has a built-in high-speed AHB bus, two low-speed peripherals APB and bus matrix, supports up to 44 general I/O, provides a wealth of high-performance analog interface, including a 12-bit 4.5 Msps ADC. Besides, it supports up to 10 external input channels, 2 independent operational amplifier, 2 high-speed comparator, and provides a variety of digital communication interfaces, including five U(S)ART, two I2C, two SPI, and two I2S, one CAN as well as one USB.

CMT2391F128 resources are shown as the following table.

Project Na	ame	CMT2391F128 External Resources	Notes
Flash capacitance (KB)		128	XV
SRAM capacitar	nce (KB)	24	
CPU kernal and f	requency	ARMCortex-M4 @ 64MHz	
Operating envir	onment	1.8~3.6V / -40~+85℃	
	General	5	
	High level	2	
	Basic	2	
Timer	LPTIM	1	
	RTC	Support	
	SPI	2	
	12S	2	
	I2C	2	
Communication	USART	5	
	LPUART	1	
GPIO		44	6 of them are connected to the SPI and RF_GPIO of RF.
DMA		8 channel	
12 bit AD	с	10-ch	4.5 Msps
OPA/COMP		2/2	
Algorithmic support		TRNG、CRC16/32、AES、DES、 TDES、SHA1/224/256、SM1、 SM3、SM4、SM7	
Security pro	otect	Read/write protect (RDP / WRP), Storage encryption	

Table 3-1. CMT 2391F128 External Resources

4 Sub-G Transceiver

4.1 Transmitter

The CMT2391F128 transmitter is based on direct frequency synthesis technology. The carrier is generated by a low noise fractional-N frequency synthesizer. The modulated data is transmitted by an efficient single-ended power amplifier (PA). The output power can be read and written via registers, step by step from -10 dBm to +20 dBm with 1 dB.

In OOK mode, when PA is switched on and off rapidly according to the transmitted data, it is easy to cause spectral spurts and burrs near the carrier. These spurts and burrs can be minimized by a Ramping mechanism. In FSK mode, CMT2391F128 supports signal transmission after Gaussian filtering, namely GFSK, so that the transmission spectrum is more concentrated.

According to different application requirements, users can design a PA matching network to optimize the transmitting efficiency.

The transmitter can operate in direct mode and packet mode. In direct mode, the data can be sent to the chip by the DIN pin and transmitted directly. In the packet mode, the data can be pre-loaded into theTX FIFO in STBY state, and transmitted together with other package elements. Data can only be transmitted from FIFO in 4 FSK mode.

4.2 Receiver

CMT2391F128 has a built-in ultra-low power, high performance low-IF OOK, FSK receiver. The RF signal induced by the antenna is amplified by a low noise amplifier, and is converted to an intermediate frequency by an orthogonal mixer. The signal is filtered by the image rejection filter, and is amplified by the limiting amplifier and then sent to the digital domain for digital demodulation. During power on reset (POR) each analog block is calibrated to the internal reference voltage. This allows the chip to remain its best performance at different temperatures and voltages. Baseband filtering and demodulation is done by the digital demodulator. The AGC loop adjust the system gain by the broad band power detector and attenuation network nearby LNA, so as to obtain the best system linearity,selectivity, sensitivity and other performance.

Owing to CMOSTEK's low power design technic, the receiver consumes very low power when it is turned on. The periodic operation mode and wake up function can further reduce the average power consumption of the system in the application with strict requirements of power consumption.

Similar to the transmitter, the CMT2391F128 receiver can operate in direct mode and packet mode. In the direct mode, the demodulator output data can be directly output through the DOUT pin of the chip.DOUT can be assigned to GPIO1/2/3. In the packet mode, the demodulator data output is sent to the data packet handler, get decoded and is filled in the FIFO. MCU can read the FIFO by the SPI interface.

4.3 Power-on Reset (POR)

The Power-On Reset circuit detect the change of the VDD power supply, and generate the reset signal for the entire CMT2391F128 system. After the POR, the MCU must go through the initialization process and re-configure the CMT2380F64. There are two circumstances which will lead to the generation of POR.

The first case is a very short and sudden decrease of VDD. The POR triggering condition is, VDD dramatically decreases by 0.9 V +/- 20% (e.g.0.72 V-1.08 V) within 2 us. To be noticed, it detects a decreasing amplitude of the VDD, not the absolute value of VDD as shown in the below figure.

Figure 4-1. POR Reset Causing from Sudden Decreasing

The second case is; a slow decrease of the VDD. The POR triggering conditionis, RF-VDD decreases to 1.45 V+/-20% (e.g.1.16 V–1.74 V) within no less than 2 us. To be noticed, it detects absolute value of RF-VDD rather than decreasing amplitude. This situation is shown as below:

Figure 4-2. POR Reset Causing from Slow Decreasing

4.4 Crystal Oscillator

The crystal oscillator provides a reference clock for the phase locked loop as well as a system clock for the digital circuits. The value of load capacitance depends on the crystal specified CL parameters. The total load capacitance between XI and XO should be equal to CL to make the crystal accurately oscillate at 32 MHz.

$$C_{L} = \frac{C_{on_{chip}} + C_{off_chip} + C_{par}}{2}$$

The Conchip is the Load capacitor mounted to the ground at both ends of the crystal provided inside the CMT2391F128. The Conchip can be configured with the Xtal Cap Load on the RFPDK to be adjustable from 23 to 29 pF, and the step is about 190 fF.

Coffchip is the load capacitor that connects both ends of the external crystal to the ground, which can be chosen by customers whether to increase it or not. Cpar is the parasitic capacitance from both ends of the crystal to the ground, which is about $2 \sim 6$ pF. A 15 pF loaded crystal oscillator is recommended for use with the CMT2391F128. In addition, the lower the ppm of the crystal, the better the receiver performance.

4.5 Low Power Frequency Oscillator (LPOSC)

The CMT2391F128 RF system integrates a sleep timer driven by a 32 kHz low power oscillator (LPOSC). When this function is enabled, the timer periodically wakes the chip from sleep. When the chip is operating in periodic operation mode, the sleep time can be configured from 62.5 us to 8585740.288 s. Since the frequency of the low power oscillator will drift with temperature and voltage, it will be automatically calibrated during the power-up phase and will be periodically calibrated. These calibration will keep the frequency tolerance of the oscillator within 1%.

4.6 Internal Low Power Detection

The chip sets up low voltage detection. When the chip is tuned to a certain frequency, the test is performed once. Frequency tuning occurs when the chip jumps from the SLEEP/STBY state to the RFS/TFS/TX/RX state. The result can be read by the LBD_DATA register.

4.7 Received Signal Strength Indicator (RSSI)

RSSI is used to evaluate the signal strength inside the channel with detection range from -127dBm to 20 dBm. Users can configure the RSSI Detect Mode in RFPDK to choose whether to output the RSSI value in real time or to lock the RSSI value at each stage when receive data packets.

CMT2391F128 allows users to setup a threshold RSSI Compare TH in RFPDK to compare with the real-time RSSI value. If the RSSI is larger than the threshold it outputs logic 1, otherwise, it outputs logic 0. The results can be output to RSSI VLD interrupt and to assist the operation of internal super-low power (SLP) mode.

Figure 4-3. RSSI Measurement and Comparison Circuit

CMT2391F128 has done a certain degree of calibration before delivery. In order to obtain more accurate RSSI measurement results, users need to recalibrate the RSSI circuit in their dedicated applications.

4.8 Phase Jump Detector (PJD)

PJD is Phase Jump Detector. When the chip is in 2-FSK demodulation, it can automatically observe the phase jump characteristics of the received signal to identify whether it is a wanted signal or an unwanted noise. OOK and 4-FSK demodulation do not support this function.

Figure 4-4. Received Signal Jump Diagram

The PJD mechanism defines that the input signal switching from 0 to 1 or from 1 to 0 is a phase jump. Users can configure the PJD_WIN_SEL<1:0> to determine the number of detected jumps for the PJD to identify a wanted signal. As shown in the above figure, although 8 symbols are received, only 6 phase jumps appeared 6. Therefore, the number of jumps is not equal to the number of symbols. Only when preamble is received, the jumps and signal numbers are equal. In general, the more jumps are used to identify the signal, the more reliable the result is; the less jumps are used, the faster the result is obtained. If the RX timeis set to are latively short period, it is necessary to reduce the number of jumps to meet the timing requirements. Normally, 4 jumps allow pretty reliable result, e.g. the chip will not mistakenly treat an incoming noise as a wanted signal, and vice versa.

Detecting the phase jump of a signal, is identical to detect whether the signal is the expected data rate. In fact, at the same time, the PJD will also detect the FSK deviation and see if it is valid, as well as to see if the SNR is over 7 dB. According to detect result of the data rate and the Deviation as well as SNR, if it is detected as a reliable signal, it outputs logic 1, otherwise outputs logic 0. The output can be used as a source of the RSSI VLD interrupt, or the receive time extending condition in thesuper low power (SLP) mode. In direct data mode, by setting the DOUT_MUTE register bit to 1, the PJD can mute the FSK demodulated data output while there is not wanted signal received.

The PJD technique is similar to the traditional carrier sense technique, while more reliable. When users combine the RSSI detection and PJD technique, they can precisely identify the status of the current channel.

4.9 Clock Data Recovery (CDR)

The basic task of a CDR system is to recover the clock signal that is synchronized with the symbol rate, while receiving the data. Not only for decoding inside the chip, but also for outputting the synchronized clock to GPIO for users to sample the data. So CDR's task is simple and important. If the recovered clock frequency is in error with the actual symbol rate, it will cause data acquisition errors at the time of reception.

CMT2391F128 has designed three types of CDR systems, which is shown as followed:

• **COUNTING system** – The system is designed for the symbol rates to be more accurate. If the symbol rate is100% aligned, the unlimited length of 0 can be received continuously without error.

• **TRACING system** – The system is designed to correct the symbol rate error. It has the tracking function. It can automatically detect the symbol rate transmitted byTX, and adjust quickly the local symbol rate of RX at the sametime, so as to minimize the error between them. The system can withstand up to 15.6% symbol rate error. Other similar products in the industry cannot reach this level.

• MANCHESTER system-This system evolves from the COUNTING system. The basic feature is the same. The only difference is that the system is specially designed for Manchester codec. Special processing can be done when the TX symbol rate has unexpected changes

4.10 Fast Frequncy Hopping

The mechanism of fast frequency hopping is based on the frequency configured on the RFPDK, for instance, the MCU can simply set 1 or 2 registers to quickly switch to another frequency points during applications at 433.92 MHz. This simplifies the way of change the RX or TX frequency in multiple channels application.

FREQ = Base Freq + 1 kHz × FH_OFFSET < 7:0 >× FH_CHANNEL < 7:0 >

In general, users can configure FH_OFFSET<7:0> during the chip initialization process. And then in the application, users can switch the channel by changing FH_CHANNEL<7:0>.

4.11 Chip Operation

4.11.1 SPI Interface

The chip communicates with the outside through the 4-wire SPI interface (FCSB、CSB、SDA、SCLK). It is defaulted set as 4-wire SPI and then configured as 3-wire after power on. The CSB is the active-low chip select signal for accessing to the registers.

The SCLK is the serial clock. Its highest speed is 10 MHz. The chip itself and the external MCU send the data at the falling edge of SCLK and capture the data at the rising edge. The SDI is for data input and SDO is for data output. In 3-wire mode, SDI is used for both data input and output, and SDO is idle. Both the address and data parts are transmitted from the MSB.

When accessing to the register, CSB is pulled low. A R/W bit is sent first, followed by a 7-bit register address. After the external MCU pulls down the CSB, it must wait for at least half a SCLK cycle, and then send the R/W bit. After the MCU sends out the last falling edge of SCLK, it must wait for at least half a SCLK cycle, and then pull the CSB high.

Noted that for the 4-wire register write operation below, while SDI writes data, SDO will output the current value of the register (old register read data), and the MCU can decide whether to read it as needed.

For 3-wire read register, both MCU and CMT2391F128 will switch the IO (SDIO) port between address 0 and 7. At this point, CMT2391F128 will switch the IO port from input to output, and MCU will switch the IO port from output to input. Please note the dotted line in the middle. It is strongly recommended that MCU switch the IO port to input before sending out the falling edge of SCLK. The CMT2391F128 does not switch IO to output until a falling edge happened. This avoids the situation when both of the MCU and CMT2391F128 sets SDIO to output at the same time, which will result in electrical conflict. For some MCUs, this may cause a reset or other abnormal behavior.

4.11.2 FIFO Interface

CMT2391F128 provides two separated 128-byte FIFO by defaul for RX and TX respectively. RX FIFO is used to store the received data in RX mode and TX FIFO is used to store the transmitting data in TX mode. Users can also set FIFO_MARGE_EN to1 to merge the two separated FIFO into one 256-byte FIFO. It can be used both underTX and RX. By configuring the FIFO_RX_TX_SEL to indicate whether it is currently used as TX FIFO or RX FIFO. When the two FIFO are not merged, users can fill in the next time 128 byte TX FIFO while the 128 byte RX FIFO is filled in the RX mode to save operation time.

FIFO can be accessed via the SPI interface. Users can clear FIFO by setting FIFO_CLR_TX or FIFO_CLR_RX. Also, users can re-send the old data in FIFO_RESTORE without re-filling the data.

Users can configure PD_FIFO to control whether the FIFO saves content in the SLEEP mode. PD_FIFO = 0 means that FIFO can save contents in SLEEP state, but it will consume about 200 nA of leakage current.

When MCU accesses FIFO, users must first configure a few registers to set up the FIFO read/write mode, as well as some other working mode. Below is the read-write timing diagram. The FIFO operation is triggered by writing address 0x7A of Page 0. When r/w bit is 0, the FIFO operation is written, and when R/W bit is 1, the FIFO operation is read.

FIFO read and write can also be operated by using 3-wire SPI. When in 3-wire, read data output and write data input are carried out on the SDI pin. When in 4-wire, write data is input from SDI and read data is output from SDO. The FIFO operation process is to access the FIFO operation port at address 0x7A, where the read and write bits determine whether to write or read data at the following. For the following continuous read or write phase, it is up to users.

Figure 4-12. SPI (3-wire) Write FIFO Timing

Transceivers provide a numbers of FIFO related interrupt sources as auxiliary tools for efficient chip operation. The FIFO interrupt timing sequence related to Rx and Tx is shown in the figure below.

Figure 4-13. Transceiver RX FIFO Interrupt Sequence Diagram

Figure 4-14. Transceiver TX FIFO Interrupt Sequence Diagram

4.11.3 Transceiver Working Status, Timing and Power Consumption

• Startup time

After the transceiver is powered on RF-VDD, it usually needs to wait for about 1ms until POR released. After the RELEASE of POR, the crystal will also start. Users will set the power_up command and the chip will leave IDLE and start to do the calibration of each module. After the calibration, the chip will stay in SLEEP, waiting for the user to initialize the chip. The chip returns to IDLE and starts the power-on process again.

The chip enters SLEEP state after calibration. And then, the MCU can control the chip to switch to different operation states through setting the register CHIP_MODE_SWT<7:0>.

• Operation State

CMT2391F128 has 7 operation states: IDLE, SLEEP, STBY, RFS, RX, TFS and TX, as shown below.

Table 4-1. Transceiver State and Corresponding Active Module

State	Binary code	Switch command	Active module	Optional module
IDLE	0x00	soft_rst	SPI, POR	None
SLEEP	0x81	go_sleep	SPI, POR	LFOSC, FIFO, Sleep Timer
READY	0x82	go_ready	SPI, POR, XTAL, FIFO	None
RFS	0x84	go_rfs	SPI, POR, XTAL, PLL, FIFO	None
TFS	0x88	go_tfs	SPI, POR, XTAL, PLL, FIFO	None
RX	0x90	go_rx	SPI, POR, XTAL, PLL, LNA+MIXER+ADC, FIFO	RX Timer
TX	0xA0	go_tx	SPI, POR, XTAL, PLL, PA, FIFO	None

The following table lists the time it takes to switch states, with the starting states listed on the left:

Table 4-2. Transceiver State and State Switching Time

	Ideal State							
Starting State	SLEEP	READY	RFS	RX	TFS	ТХ		
SLEEP		660 us	770 us	820 us	770 us	820 us		
READY	Immediately		110 us	160 us	110 us	160 us		
RFS	Immediately	Immediately		20 us	Cannot switch	Cannot switch		
RX	Immediately	Immediately	Immediately		Cannot switch	160 us		
TFS	Immediately	Immediately	Cannot switch	Cannot switch		20 us		
ТХ	Immediately	Immediately	Cannot switch	160 us	Immediately			
Note:								
In Direct mode, if the chip is in transmission, it will exit TX state as it receives command of switching.								

In Packet mode, if the chip is in transmission, it will exit TX state after transmission complete must complete.

Below shows the state switching diagram and status signal:

Figure 4-12. State Switch Diagram

SLEEP State

The chip power consumption is the lowest in SLEEP state, and almost all the modules are turned off. SPI is open, the registers of the configuration bank and control bank 1 will be saved, and the contents filled in the FIFO before will remain unchanged. However, users cannot operate the FIFO and cannot change the contents of the register. If the user opens the wake-up function, the LFOSC and the sleep counter will turn on and start working. The time required to switch from IDLE to SLEEP is the power up time. Switch from other state to SLEEP will be completed immediately.

> RFS State

RFS is a transition state before switching to RX. Except that the receiver RF module is off, the other modules are turned on, and the current will be larger than STBY. Because PLL has been locked in the RX frequency, RFS cannot switch to TX. Switching from STBY to RFS probably requires PLL calibration and stability time of 350 us. Switching from SLEEP to RFS needs to add the crystal start-up and stability time. Switching from other state to RFS will be completed immediately.

> TFS State

TFS is a transition state before switching to TX. Except that the transmitter RF module is off, the other modules are turned on, and the current will be larger than STBY. Because PLL has been locked in the TX frequency, TFS cannot switch to RX. Switching from STBY to TFS probably requires PLL calibration and stability time of 350us. Switching from SLEEP to TFS needs to add the crystal start-up and settled time. Switching from other state to TFS will be completed immediately.

> RX State

All modules on the receiver will be opened in RX state. Switching from RFS to RX requires only 20 us. Switching from STBY to RX needs to add the PLL calibration and settled time of 350 us. Switching from SLEEP to RX needs to add the crystal start-up and settled time. TX can be quickly switched to RX by sending go_switch command. Whether the TX and RX setting frequency is the same, the user need to wait for the PLL re-calibration and settled time of 350 us to switch successfully.

> TX State

All modules on the transmitter will be opened in TX state. Switching from TFS to TX requires only 20 us. Switching from STBY to TX needs to add the PLL calibration and settled time of 350 us. Switching from SLEEP to TX needs to add the crystal start-up and settled time. RX can be quickly switched to TX by sending go_switch command. Whether the RX and TX setting frequency is

the same, the user need to wait for the PLL re-calibration and settled time of 350 us to switch successfully.

4.11.4 GPIO Function and Interrupt Mapping

 $\label{eq:cmt2391F128} \mbox{ has 7 GPIO ports (GPIO0 \sim GPIO5 and NIRQ) . Each GPIO can be configured as a different input or output. \\ CMT2391F128 \mbox{ has 3 interrupt ports (INT1 \ INT2 \ INT3) . They can be configured to different GPIO mapping output. \\ \mbox{ mapping output.} \label{eq:cmt2391F128}$

Pin No.	Pin Name	I/O	Function
48	GPIO0	Ю	Can be configured as: DOUT, INT1, INT2, INT3, DCLK, TRX_SWT
47	GPIO1	Ю	Can be configured as: DCLK, INT1, INT2, DOUT, TRX_SWT
12	GPIO2	ю	Can be configured as: INT1, INT2, INT3, DCLK, DOUT, ANTD1
13	GPIO3	ю	Can be configured as: INT1, INT2, DCLK, DOUT, DIN, ANTD2
7	GPIO4	ю	Can be configured as: DOUT, INT1, INT2, DCLK, DIN, CLKO, LFCLKO
8	GPIO5	ю	Can be configured as: RSTn, INT1, INT2, DOUT, DCLK
46	NIRQ	10	Can be configured as: INT1, INT2, DCLK, DOUT, DIN, TCXO

Table 4-3. CMT2391F128 GPIO Function

Below shows the Interrupt mapping in table 4-4. INT 1 and INT 2 mapping is the same. Take INT 1 as an example.

Name	INT1_SEL	Interrupt Descriptions	Clearing Method
INT_MIX	000000	Compounded interrupt, INT_MIX will be valid if any one of the interrupts below is enabled.	Auto/By MCU
ANT_LOCK	000001	Antenna lock interrupt is active after enabling the antenna diversity function.	By MCU
RSSI_PJD_VALID	000010	Interrupt valid for RSSI and/or PJD.	Auto
PREAM_PASS	000011	Successfully receive the Preamble interrupt.	By MCU
SYNC_PASS	000100	Successfully receive the Sync Word interrupt.	By MCU
ADDR_PASS	000101	Successfully receive the Addr interrupt.	By MCU
CRC_PASS	000110	Successfully receive interrupt of passing the CRC check.	By MCU
PKT_OK	000111	Successfully receive interrupt of receiving an entire and correct packet.	By MCU
PKT_DONE	001000	 Indicates that the current data packet has been received with the following 4 cases. 1. A complete and correct packet is received. 2. Manchester decoding error occurs and the decoding circuit restarts automatically. 3. NODE ID receiving error occurs and the decoding circuit restarts automatically. 4. A signal conflict is found and the decoding circuit does not restart automatically but waits for the MCU to process. 	By MCU
SLEEP_TMO	001001	Interrupt indicating SLEEP timer timeout.	By MCU
RX TMO	001010	Interrupt indicating RX timer timeout.	By MCU
RX FIFO NMTY	001011	Interrupt indicating RX FIFO is not full.	Auto
RX_FIFO_TH	001100	Interrupt indicating the unread content of RX FIFO exceeding FIFO TH.	Auto
RX_FIFO_FULL	001101	Interrupt indicating RX FIFO is full	Auto
RX_FIFO_WBYTE	001110	Interrupt generated every time a BYTE is written into RX FIFO, i.e., it is a pulse.	Auto
RX_FIFO_OVF	001111	Interrupt indicating RX FIFO is overflow	Auto
TX_DONE	010000	Interrupt indicating TX complete.	By MCU
TX_FIFO_NMTY	010001	Interrupt indicating TX FIFO is not full.	Auto
TX_FIFO_TH	010010	Interrupt indicating the unread content of TX FIFO exceeding FIFO TH.	Auto
TX_FIFO_FULL	010011	Interrupt indicating TX FIFO is full.	Auto
STATE_IS_READY	010100	Interrupt indicating that the current state is READY.	Auto
STATE_IS_FS	010101	Interrupt indicating that the current state is RFS or TFS.	Auto
STATE_IS_RX	010110	Interrupt indicating that the current state is RX.	Auto
STATE IS TX	010111	Interrupt indicating that the current state is TX.	Auto
LBD_STATUS	011000	Interrupt indicating that low voltage detection being active (VDD is lower than the set TH).	By MCU
API_CMD_FAILED	011001	Interrupt indicating API command execution error.	By MCU

Table 4-4. CMT 2380F64 Interrupt Mapping

Name	INT1_SEL	Interrupt Descriptions	Clearing Method
API_DONE	011010	Interrupt indicating API command completion.	By MCU
TX_DC_DONE	011011	Interrupt for Duty Cycle TX mode complete	By MCU
ACK_RECV_FAILED	011100	Interrupt indicating ACK receiving failure.	By MCU
TX_RESEND_DONE	011111	Interrupt for repeated TX complete	By MCU
NACK_RECV	011110	Interrupt indicating receipt of NACK.	By MCU
SEQ_MATCH	011111	Interrupt indicating successful serial number matching.	By MCU
CSMA_DONE	100000	Interrupt for CSMA complete	By MCU
CCA_STATUS	100001	Signal channel sensing interrupt.	By MCU

Interrupt is enabled when register value is 1 by default. Users can set the INT_POLAR register bit to 1 to make all interrupts enabled when the register value is 0. Take INT1 as an example, the control and selection of two different types of interrupt sources is shown in the figure below. The control and mapping ofINT1 and INT2 is the same and both can be mapped to any GPIO.INT_MIX is the only source for INT3, which can only be mapped to GPIO0 and GPIO2. In application, users can choose either to map all interrupt sources to the interrupt port through INT_MIX (identify which interrupt is valid by checking the interrupt flag) or directly map a specific interrupt source to the interrupt port.

Figure 4-17. CMT2391F128 INT 1 Interrupt Mapping

5 Controller Function

5.1 Flash Memory

CMT2391F128 includes embedded encrypted flash memory (Flash) and embedded SRAM, Figure 5-1 below shows the memory address map.

5.1.1 Embedded Flash Memory

Integrated from 64K to 128K bytes embedded encryption FLASH, used to store programs and data, page size of 2Kbyte, supporting page erasing, word writing, word reading, half word reading, byte reading operations. Support user partition management, can be divided into a maximum of three user partitions, different users cannot access each other's data (only executable code).

5.1.2 Embedded SRAM

The chip integrates a built-in SRAM of up to 24K bytes, including SRAM1 and SRAM2. The maximum size of SRAM1 is 16K bytes, and that of SRAM2 is 8K bytes. In STOP2 mode, SRAM1 and SRAM2 can retain data. In STANDBY mode, only SRAM2 can retain data.

5.1.3 Nested Vector Interrupt Controller (NVIC)

Built-in nested vector interrupt controller, capable of handling up to 86 maskable interrupt channels (not including the 16 Cortex[™]-M4F interrupts) and 16 priorities.

- Tightly coupled NVIC enables low latency interrupt response processing
- Interrupt vector entry address directly into the kernel
- Tightly coupled NVIC interface
- Allows early handling of interrupts
- Handles late arriving higher-priority interrupts
- Support interrupt tail link function
- Automatically saves processor state
- Automatically resumes when the interrupt returns with no additional instruction overhead

This module provides flexible interrupt management with minimal interrupt latency.

5.2 External Interrupt/Event Controller (EXTI)

The external interrupt/event controller contains 27 edge detectors for generating interrupt/event requests. Each interrupt line can be independently configured with its triggering event (rising edge or falling edge or bilateral edge) and can be individually shielded. There is a suspended register that maintains the state of all interrupt requests. EXTI can detect clock cycles with pulse widths smaller than internal APB2. Up to 64 universal I/O ports are connected to 16 external interrupts.

5.3 Clock System

The device provides a variety of clocks for users to choose from, including internal high speed RC oscillator HSI (16MHz), internal multi-speed clock MSI (100K~4MHz configurable), internal low speed clock LSI (40KHz), external high speed clock HSE (40Hz~32MHz), external low speed clock LSE (32.768KHz), PLL.

During reset, the internal MSI clock is set as the default CPU clock, and then the user can choose the external HSE clock with failure monitoring function. When an external clock failure is detected, it will be isolated, the system will automatically switch to MSI, and if interrupts are enabled, the software can receive the corresponding interrupt. Also, complete interrupt management of the PLL clock can be adopted when needed (such as when an indirectly used external oscillator fails).

MSI clock can be used to wake up quickly and execute instructions in STOP2 state, or provide clock for the system in low power operation state, and some other scenarios with low clock accuracy and high power consumption requirements.

The built-in clock security system detects whether the external HSE or LSE fails in real time. If the external clock fails, the system automatically switches to the internal clock and generates an interrupt alarm. Multiple prescalers are used to configure the AHB frequency, high speed APB (APB2) and low speed APB (APB1) regions. AHB has a maximum frequency of 64MHz, APB2 has a maximum frequency of 32MHz and APB1 has a maximum frequency of 16MHz.

When using USB function, both HSE and PLL must be used and the CPU frequency must be 48MHz.

Figure 5-2. Clock Tree

5.4 Boot Mode

At BOOT time, the BOOT mode after reset can be selected with the BOOT0 pin and option byte BOOT configuration (USER2):

- Boot from program FLASH memory
- Boot from system memory
- Boot from internal SRAM

The Bootloader is stored in the system memory and can program the flash memory through USART1 or USB interface.

5.5 Power Supply Scheme

■ VDD = 1.8~3.6V: The VDD pin supplies power to the I/O pin and the internal voltage regulator.

■ VLCD supplies power to the Segment LCD module and two power supply modes, internal and external, are configured through registers. When using LCD internal boost mode power supply, a 1uF capacitor must be connected to the VLCD pin, or an external input power supply can be used directly to power the LCD module.

■ VSSA, VDDA = 1.8~3.6V: provides power supply for ADC, DAC, OPAMP and COMP. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} respectively.

5.6 Reset

POR and BOR circuits are integrated inside the device. This part of the circuit is always in working state to ensure that the system works stably when the power supply exceeds 1.8V. When VDD falls below a set threshold (VPOR/BOR), place the device

in the reset state without using an external reset circuit.

5.7 Programmable Voltage Detector

The device has a built-in programmable voltage detector (PVD), which monitors the power supply of VDD and compares it with the threshold VPVD. When VDD is lower or higher than the threshold VPVD, an interrupt will be generated. The interrupt handler can send a warning message, and the PVD function needs to be started through the program.

5.8 Voltage Regulator

The voltage regulator has 2 control modes:

- Master mode, MCU run in RUN, SLEEP modes
- Low power mode, MCU run in LP RUN, LP SLEEP, STOP2, and STANDBY modes The voltage regulator is always in the master mode after the MCU reset.

5.9 Low Power Mode

CMT2391F128 supports five low-power modes.

LP-RUN mode

In LP-RUN (Low Power RUN) mode, CPU running at MSI clock, executes programs in FLASH or SRAM, and PLL turned off. Except for USB/CAN/algorithm (SAC) module, other peripherals can be configured as working mode.

SLEEP mode

In SLEEP mode, only CPU stop, all peripherals are configurable and can wake up the CPU when an interrupt/event occurs.

STOP2 mode

STOP2 mode is based on the Cortex®-M4F deep sleep mode, and all the core digital logic areas are powered off. Main voltage regulator (MR) is off, HSE/HSI/MSI/PLL is off. CPU register retention, LSE/LSI optional work, RCC retention, all GPIO retention, SRAM1 and SRAM2 optional retention, SPI, USART/UART, I2C, WWDG retention, 80 byte backup register retention, RET domain and low power supply domain work normally.

The microcontroller can be woken up from STOP2 mode by any signal configured as EXTI, which can be 16 external EXTI signals (I/O related), WKUP pin wakeup, RTC periodic wake up, RTC alarm, RTC tamper, RTC timestamp, NRST reset, IWDG reset.

The microcontroller can be woken up from STOP2 mode by any signal configured as EXTI, which can be 16 external EXTI signals (I/O related), PVD output, RTC periodic wake up, RTC alarm.

STANDBY mode

In STANDBY mode, the current consumption is low. Internal voltage regulator is turned off, PLL, HSI RC oscillator and HSE crystal oscillator are also turned off, only LSE and LSI can optionally work. After entering STANDBY mode, main domain register contents will be lost, SRAM2 is optional, and the STANDBY circuit still works.

External reset signal on the NRST, IWDG reset, rising/falling edge on the WKUP pin, RTC periodic wake up, RTC alarm, RTC timestamp and RTC tamper can wake up the microcontroller from STANDBY mode.

Note: RTC, IWDG and corresponding clock can not be stopped when entering standby mode.

5.10 Direct Memory Access (DMA)

The device integrates a flexible general-purpose DMA controller that supports eight DMA channels to manage data transfers from memory to memory, peripherals to memory, and memory to peripherals. The DMA controller supports the management of ring buffers, avoiding interruptions when controller transfers reach the end of the buffer. Each channel has dedicated hardware DMA request logic, and each channel can be triggered by software. The transmission length, source address and destination address of each channel can be set separately by software. DMA can be used with major peripherals: SPI, I2C, USART, TIMx (general, basic and advanced timers), DAC, I2S and ADC.

5.11 Real Time Clock (RTC)

RTC is a set of continuously running counters with a built-in calendar clock module that provides a perpetual calendar function, as well as alarm interrupt and periodic interrupt (minimum 2 clock cycles) functions. The RTC will not be reset by the system or

power reset source, nor will it be reset when woken up from STANDBY mode. The RTC can be driven by either a 32.768kHz external crystal oscillator, an internal low-power 40kHz RC oscillator, or a high-speed external clock with 128 frequency divisions. For application scenarios requiring very high timing accuracy, it is recommended to use an external 32.768kHz clock as the clock source. Meanwhile, to compensate for the clock deviation of natural crystal, a 256Hz signal can be output to calibrate the clock of RTC. The RTC has a 22-bit predivider for a time-based clock, which will produce a 1-second long time reference at 32.768kHz by default. In addition, RTC can be used to trigger wake up in low-power mode.

5.12 Timer and Watchdog

Up to 2 advanced control timers, 5 general-purpose timers and 2 basic timers, 1 low power timer, 2 watchdog timers and 1 system tick timer.

The following table compares the functions of advanced control timer, general-purpose timer and basic timer:

Timer	Counter resolution	Counter type	Prescaler factor	Generate DMA requests	Capture/compare channels	Complementary output
TIM1 TIM8	16	Up, down, up/down	Any integer between 1 and 65536	Y	4	Y
TIM2 TIM3 TIM4 TIM5 TIM9	16	Up, down, up/down	Any integer between 1 and 65536	Y	4	Ν
TIM6 TIM7	16	up	Any integer between 1 and 65536	Y	0	Ν

Table 5-1. Comparison of Timer Functions

5.12.1 Basic Timer (TIM6 and TIM7)

Basic timers TIM6 and TIM7 each contain a 16-bit auto-reload counter. These two timers are independent of each other and do not share any resources. The basic timer can provide a time reference for general purpose timers, and in particular can provide a clock for a digital-to-analog converter (DAC). The basic timer is directly connected to the DAC inside the chip and drives the DAC directly through the trigger output.

- 16-bit auto-reload up-counting counters
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- Synchronization circuit for triggering DAC
- Generate interrupt/DMA as updating event (with counter overflow)

5.12.2 General-purpose Timer TIMx

The general-purpose timers (TIM2, TIM3, TIM4, TIM5 and TIM9) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc. Main features:

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting)
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- TIM2, TIM3, TIM4, TIM5 and TIM9 up to 4 channels
- Channel's working modes: PWM output, ouput compare, one-pulse mode output, input capture
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - Trigger event
 - Input capture
 - Output compare
- Timer can be controlled by external signal

- Timers can be linked together internally for timer synchronization or chaining
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position
- Hall sensor interface: used to do three-phase motor control
- Supports capture of internal comparator output signals. TIM9 supports capture of internal HSE, LSI, and LSE signals

5.12.3 Low Power Timer LPTIM

The LPTIM is a 16-bit timer with multiple clock sources, it can keep running in all power modes except for Standby mode. The clock source can come from a LSE, LSI, internal high-speed clock, or external clock. LPTIM can run without internal clock source, it can be used as a "Pulse Counter". LPTIM can not only realize the basic timing count, input capture function, but also can be used as a pulse counter, supporting single pulse or quadrature/non-quadrature pulse counting function. Also, the LPTIM can wake up the system from low-power modes. Main features:

-
- 16-bit up counter
- 3-bit prescaler, 8 kinds of frequency division factors (1, 2, 4, 8, 16, 32, 64, 128)
- Multiple clock sources:
 - ♦ Internal clock source: LSE, LSI, HSI, PCLK1, COMP1_OUT or COMP2_OUT
 - External clock source: External clock source through LPTIM Input1 (operating without LP oscillator, for pulse counter applications)
- 16-bit auto-load register (LPTIM_ARR)
- 16-bit compare register (LPTIM_COMP)
- Continuous or one-shot mode counting mode
- Programmable software or hardware input trigger
- Programmable digital filter for glitch filtering
- Configurable output (square wave, PWM)
- Configurable IO polarity
- Encoder mode
- Pulse counting mode, support single pulse counting, double pulse counting (quadrature and non-quadrature)

5.12.4 Advanced control timer (TIM1 and TIM8)

The advanced control timers (TIM1 and TIM8) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc. Advanced timers have complementary output function with dead-time insertion and break function. Suitable for motor control.

Main features:

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting)
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- Programmable Repetition Counter
- TIM1 and TIM8 up to 4 capture/compare channels:
 - PWM output
 - Ouput compare
 - One-pulse mode output
 - Input capture
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - Trigger event
 - Input capture
 - Output comparision
 - Break input

- Complementary outputs with adjustable dead-time
 - ♦ For TIM1 and TIM8, channel 1,2,3 support this feature
- Timer can be controlled by external signal
- Timers can be linked together internally for timer synchronization or chaining
- TIM1_CC5 and TIM8_CC5 for COMP blanking
- TIM1_CC6 is used to switch the input channel of OPAMP1 and OPAMP2; TIM8_CC6 can switch the input channel of OPAMP2
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position
- Hall sensor interface: used to do three-phase motor control

5.12.5 Systick Timer (Systick)

This timer is dedicated to real-time operating systems and can also be used as a standard down-counter. Main features:

- 24 bit down-counter
- Automatic reloading function
- A maskable system interrupt is generated when the counter is 0
- Programmable clock source

5.12.6 Watchdog (WDG)

Support for two watchdog: independent watchdog (IWDG) and window watchdog (WWDG). Two watchdogs provide increased security, time accuracy, and flexibility in use.

• Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit down-counter and a 3-bit prescaler. It is driven by a separate low-speed RC oscillator that remains active even if the master clock fails and operates in STOP2 and STANDBY modes. Once activated, if the dog is not fed (clears the watchdog counter) within the set time, the IWDG generates a reset when the counter counts to 0x000. It can be used to reset the entire system in the event of an application problem, or as a free timer to provide time-out management for applications. The option byte can be configured to start the watchdog software or hardware. Reset and low power wake up are available.

• Window watchdog (WWDG)

A window watchdog is usually used to detect software failures caused by an application deviating from the normal running sequence due to external interference or unforeseen logical conditions. Unless the down-counter value is flushed before the T6 bit becomes 0, the watchdog circuit generates an MCU reset when the preset time period is reached. If the 7-bit down-counter value (in the control register) is flushed before the down-counter reaches the window register value, then an MCU reset will also occur. This indicates that the down-counter needs to be refreshed in a finite time window.

Main features:

- The clock of the window watchdog (WWDG) is obtained by dividing the APB1 clock frequency by 4096.
- Programmable free-running down-counter
- Reset condition:
 - When the down-counter is less than 0x40, a reset occurs (if the watchdog is started)
 - A reset occurs when the down-counter is reloaded outside the window (if the watchdog is started)
 - If the watchdog is enabled and interrupts are allowed, an early wake up interrupt (EWINT) occurs when the downcounter equals 0x40, which can be used to reload the counter to avoid WWDG reset

5.13 I2C Bus Interface

The device integrates up to two independent I2C bus interfaces, which provide multi-host function and control all I2C bus-specific timing, protocol, arbitration and timeout. Supports multiple communication rate modes (up to 1MHz), supports DMA operations and is compatible with SMBus 2.0. The I2C module provides multiple functions, including CRC generation and verification, SMBus (System Management Bus) and PMBus (Power Management Bus).
Main features:

- Multi-master function: this module can be used as master device or slave device
- I2C master device function:
 - Generate a clock
 - Generate start and stop signals
- I2C slave device function:
 - Programmable address detection
 - The I2C interface supports 7-bit or 10-bit addressing and dual-slave address response capability in 7-bit slave mode
 - Stop bit detection
- Generate and detect 7-bit/10-bit addresses and broadcast calls
 - Support different communication speeds
 - Standard speed (up to 100 kHz)
 - Fast (up to 400 kHz)
 - ♦ Fast+ (up to 1MHz)
- Status flags:
 - Transmitter/receiver mode flag
 - Byte transfer complete flag
 - I2C bus busy flag
- Error flags:
 - Arbitration loss in master mode
 - Acknowledge (ACK) fail after address/data transfer
 - Error start or stop condition detected
 - Overrun or underrun when clock extending is disable
- Two interrupt vectors:
 - 1 interrupt for address/data communication success
 - 1 interrupt for an error
- Optional extend clock function
- DMA of single-byte buffers
- Generation or verification of configurable PEC(Packet error detection)
- In transmit mode, the PEC value can be transmitted as the last byte
- PEC error check for the last received byte
- SMBus 2.0 compatible
 - Timeout delay for 25ms clock low
 - 10ms accumulates low clock extension time of master device
 - ♦ 25ms accumulates low clock extension time of slave device
 - PEC generation/verification of hardware with ACK control
 - Support address resolution protocol (ARP)
- Compatible with the PMBus

5.14 Universal Synchronous/Asynchronous Transceiver (USART)

CMT2391F128 integrates up to 5 serial transceiver interfaces, including 3 universal synchronous/asynchronous transceivers (USART1, USART2 and USART3) and 2 universal asynchronous transceivers (UART4 and UART5). All five interfaces provide asynchronous communication, support for IrDA SIR ENDEC transmission codec, multi-processor communication mode, single-wire half-duplex communication mode, and LIN master/slave function.

The USART1, USART2, and USART3 interfaces have hardware CTS and RTS signal management, ISO7816-compatible smart card mode, and similar to SPI communication mode, all of which can use DMA operations. Main features:

- Full duplex, asynchronous communication
- NRZ standard format
- Fractional baud rate generator system, baud rate programmable, used for sending and receiving
- Programmable data word length (8 or 9 bits)
- Configurable stop bit, supporting 1 or 2 stop bits
- LIN master's ability to send synchronous interrupters and LIN slave's ability to detect interrupters. When USART hardware is configured as LIN, it generates 13 bit interrupters and detects 10/11 bit interrupters
- Output clock for synchronous transmission
- IRDA SIR encoder decoder, supports 3/16 bit duration in normal mode
- Smart card simulation function:
 - The smart card interface supports the asynchronous smart card protocol defined in ISO7816-3
 - 0.5 and 1.5 stop bits for smart cards
- Single-wire half duplex communication
- Configurable multi-buffer communication using DMA, receiving/sending bytes in SRAM using centralized DMA buffer
- Independent transmitter and receiver enable bits
- Detect flag:
 - Receive buffer is full
 - Send buffer empty
 - Transmission complete
- Parity control:
 - Send parity bit
 - Check the received data
- Four error detection flags:
 - Overflow error
 - Noise error
 - Frame error
 - Parity error
- 10 USART interrupt sources with flags:
 - CTS change
 - LIN break detection
 - Send data register empty
 - Send complete
 - Received data register is full
 - Bus was detected to be idle
 - Overflow error
 - Frame error
 - Noise error
 - Parity error
- Multi-processor communication, if the address does not match, then enter the silent mode
- Wake up from silent mode (via idle bus detection or address flag detection)
- Mode configuration:

USART modes	USART1	USART2	USART3	UART4	UART5
Asynchronous mode	support	support	support	support	support

CMT2391F128

USART modes	USART1	USART2	USART3	UART4	UART5
Hardware flow control	support	support	support	nonsupport	nonsupport
Multiple buffer communication (DMA)	support	support	support	support	support
Multiprocessor communication	support	support	support	support	support
Synchronous mode	support	support	support	nonsupport	nonsupport
Smart card	support	support	support	nonsupport	nonsupport
Half duplex (Single wire mode)	support	support	support	support	support
IrDA	support	support	support	support	support
LIN	support	support	support	support	support

5.15 Serial Peripheral Interface (SPI)

The device integrates two SPI interfaces, which allow the chip to communicate with peripheral devices in a half/full duplex, synchronous, serial manner. This interface can be configured in master mode and provides a communication clock (SCK) for external slave devices. Interfaces can also work in a multi-master configuration. It can be used for a variety of purposes, including two-line simplex synchronous transmission using a two-way data line, and reliable communication using CRC checks. Main features:

- 3-wire full-duplex synchronous transmission
- Two-wire simplex synchronous transmission with or without a third bidirectional data line
- 8 or 16 bit transmission frame format selection
- Master or slave operations
- Support multi-master mode
- 8 master mode baud rate predivision frequency coefficient (Max f_{PCLK}/2)
- Slave mode frequency (Max f_{PCLK}/2)
- Fast communication between master mode and slave mode
- NSS can be managed by software or hardware in both master and slave modes: dynamic change of master/slave modes
- Programmable clock polarity and phase
- Programmable data order, MSB before or LSB before
- Dedicated send and receive flags that trigger interrupts
- SPI bus busy flag
- Hardware CRC for reliable communication:
 - In send mode, the CRC value can be sent as the last byte
 - In full-duplex mode, CRC is automatically performed on the last byte received
- Master mode failures, overloads, and CRC error flags that trigger interrupts
- Single-byte send and receive buffer with DMA capability: generates send and receive requests
- Maximum interface speed: 16Mbps

5.16 Low Power Asynchronous Transceiver (LPUART)

The device integrates a low-power asynchronous serial transceiver (LPUART), which can receive data in STOP2 state (maximum baud rate 9600) and wake up MCU after generating an interrupt event. In addition, by configuring the clock as a high-speed clock (such as APB or HSE clock), it can be used as a regular asynchronous serial port to support higher baud rate.

Main features:

- Provide standard asynchronous communication bits (start, parity, and stop bits)
 - Generates 1 start bit
 - Generates 1 parity bit (odd or even parity can be set) or no parity bit
 - Generates 1 stop bit
 - Bytes are transmitted from the lowest to the highest

- Support 32 bytes receive FIFO and 1 byte send FIFO
- Provides send mode control bits
- Programmable baud rate
- Full duplex communication
- Support data communication and error handling interruption
- Access to status bits can be done in two ways: query or interrupt
- Parity error flag
- Baud rate parameter register
- Support hardware flow control
- Support DMA data transfer
- Support the following interrupt event sources to wake up the MCU in STOP2 state:
 - Start bit detection
 - Receive buffer non-empty detection
 - Received the specified 1 bytes of data
 - Received the specified 4 bytes of data

5.17 Serial Audio Interface (I²S)

I²S is a 3-pin synchronous serial interface communication protocol. The device integrates two standard I²S interfaces (multiplexed with SPI) and can operate in master or slave mode. The two interfaces can be configured for 16-bit, 24-bit or 32-bit transmission, or as input or output channels, supporting audio sampling frequencies from 8kHz to 96kHz. It supports four audio standards, including Philips I²S, MSB and LSB alignment, and PCM.

It can work in master and slave mode in half duplex communication. When it acts as a master device, it provides clock signals to external slave devices through an interface.

Main features:

- Simplex communication (send or receive only)
- Master or slave operations
- 8-bit linear programmable prescaler for accurate audio sampling frequencies (8KHz to 96KHz)
- The data format can be 16, 24, or 32 bits
- Audio channel fixed packet frame is 16 bit (16 bit data frame) or 32 bit (16, 24 or 32 bit data frame)
- Programmable clock polarity (steady state)
- The overflows flag bit in slave sending mode and the overflows flag bit in master/slave receiving mode
- 16-bit data registers are used for sending and receiving, with one register at each end of the channel
- Supported I²S protocols:
 - ♦ I²S Philips standard
 - MSB alignment standard (left aligned)
 - LSB alignment standard (right aligned)
 - PCM standard (16-bit channel frame with long or short frame synchronization or 16-bit data frame extension to 32-bit channel frame)
- The data direction is always MSB first
- Both send and receive have DMA capability
- The master clock can be output to external audio devices at a fixed rate of 256 x Fs (Fs is the audio sampling frequency)

5.18 Controller Area Network (CAN)

Device integrates a CAN bus interface compatible with 2.0A and 2.0B (active) specifications, with bit rates up to 1 Mbps. It can receive and send standard frames with 11-bit identifiers, as well as extended frames with 29-bit identifiers.

Main features:

- Support CAN protocol 2.0A and 2.0B active mode
- Baud rate up to 1Mbps
- Receive:
 - Level 3 depth of 2 receiving FIFO
 - Variable filter group
 - There are 14 filter groups
 - Identifier list
 - The FIFO overflow processing mode is configurable
 - Record the time stamp of the receipt of the SOF
- Time-triggered communication mode:
 - Disable automatic retransmission mode
 - 16-bit free run timer
 - Timestamp can be sent in the last 2 bytes of data
- Management:
 - Interrupt masking
 - The mailbox occupies a separate address space to improve software efficiency

5.19 Universal Serial Bus (USB)

Device is embedded with a full speed USB compatible device controller that follows the full speed USB device (12Mbit/s) standard. The endpoint can be configured by software and has suspend/resume function. The USB dedicated 48MHz clock is generated directly from the internal PLL.

Main features:

- Comply with the technical specifications of USB2.0 full-speed equipment
- 1 to 8 USB endpoints can be configured
- CRC(cyclic redundancy check) generation/check, reverse non-return to zero (NRZI) encoding/decoding and bit filling
- Double buffer mechanism for bulk/isochronous endpoints
- Support USB suspend/resume operation
- Frame lock clock pulse generation
- Integrated USB DP signal line pull-up 1.5K resistor (user can enable or disable through software control)

5.20 Algorithmic Hardware Acceleration Engine (SAC)

Embedded algorithm hardware acceleration engine, support a variety of international algorithms and national cryptosymmetric cryptography algorithm and hash cryptography algorithm acceleration, compared with pure software algorithm can greatly improve the encryption and decryption speed.

The hardware supports the following algorithms:

- Supports DES symmetric algorithms
 - DES and 3DES encryption and decryption operations are supported
 - TDES supports 2KEY and 3KEY mode
 - Supports CBC and ECB mode
- Supports the SYMMETRIC AES algorithm
 - Supports 128 bits, 192 bits, or 256 bits key length
 - Supports CBC, ECB, and CTR mode

- SHA hash algorithm is supported
 - Supports SHA1, SHA244, SHA256
- Supports the MD5 digest algorithm
- Supports symmetric SM1, SM4, SM7 algorithm and SM3 hash algorithm

5.21 Segment LCD Driver (Segment LCD)

The LCD controller is suitable for monochrome passive Segment LCD, with a maximum of 8 common terminals (COM) and 44 Segment terminals (SEG), the specific number of terminals depends on the package of pin. The Segment LCD consists of a number of segments that can be turned on or off. Each segment contains a layer of liquid crystal molecules aligned between the two electrodes. The corresponding segment is visible when a voltage greater than the threshold voltage is applied to the liquid crystal. To avoid electrophoretic effects in the liquid crystal, the segment voltage must be AC. The LCD controller can work in low power mode except STANDBY mode.

Main features:

- Frame rate is configurable
- Duty cycle is configurable: static, 1/2, 1/3, 1/4 and 1/8 duty cycle are supported
- Voltage bias can be configured: static, 1/2, 1/3 and 1/4 bias are supported
- Double buffering mechanism allows the user to update the data (pixel active/inactive information) in the display memory registers at any time
- LCD power supply optional: add power supply from V_{LCD} pin (you can also connect V_{LCD} directly to VDD); Use a built-in DC-DC step-up converter (external 1µF capacitor is required)
- LCD clock source Optional: HSE/32, LSI, or LSE
- Two contrast control methods: adjust dead time of up to 7 phase cycles between frames; adjust V_{LCD} in V_{LCDmin}~ V_{LCDmax} range (when using internal step-up converter only)
- Built-in resistor network is used to generate LCD intermediate voltage, which can be configured by software to match the capacitive load of LCD panel
- Built-in voltage output buffer
- It can be displayed in SLEEP, LOW-POWER RUN, LOW-POWER SLEEP, and STOP2 modes. It can also be disabled in these modes for lower POWER consumption
- Built-in phase inversion reduces electromagnetic interference (EMI) and power consumption
- Support blink function: 1, 2, 3, 4, 8 or all pixels can blink at the specified frequency (0.5Hz, 1Hz, 2Hz or 4Hz)
- Pins used for SEG and COM functions should be configured with the appropriate AFIO

5.22 General Purpose Input/Output Interface (GPIO)

Up to 64 GPIO, which can be divided into four groups (GPIOA/GPIOB/GPIOC/GPIOD). Each group of GPIOA, GPIOB, GPIOC and GPIOD has 16 ports. Each GPIO pin can be configured by software as an output (push pull or open drain), input (with or without pull-up or pull-down), or alternate peripheral function port. Most GPIO pins are shared with digital or analog alternate peripherals, and some I/O pins are multiplexed with clock pins. All GPIO pins except ports with analog input capability have high current passing capability.

Main features:

- Each bit of the GPIO port can be configured separately by the software into multiple modes:
 - Input floating
 - Input pull up (weak pull up)
 - Input pull down (weak pull down)
 - Analog function
 - Open drain output
 - Push-pull output
 - Push-pull alternate function
 - Open drain alternate function
- General I/O (GPIO)

- During and just after reset, the alternate function is not enabled, except for BOOT0 (which is an input pull-down), and the I/O port is configured to analog input mode
- After reset, the default state of pins associated with the debug system is enable SWJ, the JTAG pin is placed in input pull-up or pull-down mode:
 - JTDI in pull-up mode
 - JTCK in pull-down mode
 - JTMS in pull-up mode
 - NJTRST in pull-up mode
- When configured as output, values written to the output data registers are output to the appropriate I/O pins. Can be output in push pull mode or open drain mode
- Separate bit setting or bit clearing functions
- External interrupt/wake up: All ports have external interrupt capability. In order to use external interrupts, ports must be configured in input mode
- Alternate function: (port bit configuration register must be programmed before using default alternate function)
- GPIO lock mechanism, which freezes I/O configurations. When a LOCK is performed on a port bit, the configuration of the port bit cannot be changed until the next reset

5.23 Analog/Digital Converter (ADC)

The device supports a 12-bit 4.5Msps sequential comparison ADC with a sampling rate of single-ended and differential inputs, measuring 16 external and 3 internal sources.

Main features:

- Support 12/10/8/6-bits resolution configurable
 - The maximum sampling rate at 12bit resolution is 4.57MSPS
 - The maximum sampling rate at 10bit resolution is 5.33MSPS
 - The maximum sampling rate at 8bit resolution is 6.4MSPS
 - The maximum sampling rate at 6bit resolution is 8MSPS
 - ADC clock source is divided into working clock source, sampling clock source and timing clock source
 - ♦ AHB_CLK can be configured as the working clock source, up to 64MHz
 - PLL can be configured as a sampling clock source, up to 64MHZ, support 1, 2, 4, 6, 8, 10, 12, 16, 32, 64, 128, 256 frequency division
 - The AHB_CLK can be configured as the sampling clock source, up to 64MHz, and supports frequency 1,2,4,6,8,10,12,16,32
 - The timing clock is used for internal timing functions and the frequency must be configured to 1MHz
- Supports timer trigger ADC sampling
- Support 2.048V internal reference voltage VREFBUFFER
- Interrupts when conversion ends, injection conversion ends, and analog watchdog events occur
- Single and continuous conversion modes
- Automatic scan mode from channel 0 to channel N
- Support for self-calibration
- Data alignment with embedded data consistency
- Sampling intervals can be programmed separately by channel
- Both regular conversions and injection conversions have external triggering options
- Continuous mode
- ADC power supply requirements: 1.8V to 3.6V
- ADC input range: VREF- ≤ VIN ≤ VREF+
- ADC can use DMA operations, and DMA requests are generated during regular channel conversion
- Analog watchdog function can monitor one, multiple, or all selected channels with great precision. When the monitored signal exceeds the preset threshold, an interruption will occur

5.24 Digital/Analog Converter (DAC)

The device integrates a digital to analog converter (DAC), which is a 12-bit digital input and voltage output digital/analog converter with an output channel of built-in Buffer. DAC can be referenced via V_{DDA} or $V_{REFBUFFER}$.

Main features:

- An output channel for a built-in Buffer
- Configurable 8/12-bits output

- Configurable left and right data alignment in 12-bit mode
- Synchronous update function
- Generate noise wave
- Generate triangle wave
- DMA support
- External trigger for conversion

5.25 Operational Amplifier (OPAMP)

The device integrates up to 2 independent operational amplifiers with multiple operating modes such as external amplifier, internal follower and programmable amplifier (PGA) (or both internal amplifier and external filter).

Main features:

- Support rail to rail input
- Forward and reverse input checkboxes
- OPAMP working mode can be configured as:
 - Independent mode (external gain setting)
 - PGA mode, programmable gain 2X, 4X, 8X, 16X, 32X
 - Follower mode
- The internally connected ADC channel is used to measure the output signal of the operational amplifier

5.26 Analog Comparator (COMP)

The device integrates up to 2 comparators, among which COMP1 supports low power mode and can work in STOP2 state. It can be used as a separate device (all ports of the comparator are plugged into the I/O) or in combination with a timer. In the case of motor control, it can be combined with the PWM output from the timer to form periodic current control.

Main features:

- Rail to rail comparators are supported
- The reverse and forward sides of the comparator support the following inputs
 - Optional I/O
 - ♦ DAC channel output
 - Internal 64 level adjustable voltage input reference:
 - VREF1 is a low-power voltage reference source, which can only be used for COMP1
 - VREF2 is a non-low power voltage reference source, which can be used for COMP1 and COMP2
 - Programmable hysteresis can be configured as no hysteresis, low hysteresis, medium hysteresis, and high hysteresis
- The comparator can output to EITHER I/O or timer input for triggering
 - Capture events
 - OCREF_CLR events (for periodic current control)
 - The brake events
- The comparator supports output filtering, including analog and digital filtering
- COMP1/COMP2 can form a window comparator
- Support comparator output with blanking, you can choose forbidden energy blanking or Timer1_OC5, Timer8_OC5 as blanking input
- Each comparator can have interrupt wake up capability, support from SLEEP mode wake up, COMP1 can support under STOP2 wake up

5.27 Temperature Sensor (TS)

The temperature sensor generates a voltage that varies linearly with temperature in the range of 1.8V<VDDA< 3.6V. The temperature sensor is internally connected to the ADC_IN17 input channel for converting the output of the temperature sensor to digital values.

5.28 Cyclic Redundancy Check Calculation Unit (CRC)

Integrated CRC32 and CRC16 functions, the cyclic redundancy check (CRC) caculating unit is based on a fixed generation polynomial to obtain any CRC calculation results. In many applications, CRC-based techniques are used to verify data transfer or storage consistency. Within the scope of the EN/IEC 60335-1 standard, which provides a means of detecting flash memory errors, CRC cells can be used to calculate signatures of software in real time and compare them with signatures generated when linking and generating the software.

Main features:

- ♦ CRC16: supports polynomials X¹⁶ + X¹⁵ + X² + 1
- ◆ CRC32: supports polynomials X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1
- CRC16 calculation time: 1 AHB clock cycles (HCLK)
- CRC32 calculation time: 1 AHB clock cycles (HCLK)
- The initial value for cyclic redundancy computing is configurable
- Support DMA mode

5.29 Unique Device Serial Number (UID)

CMT2391F128 has two built-in unique device serial numbers of different lengths, which are 96-bit unique device ID (UID) and 128-bit unique customer ID (UCID). These two device serial numbers are stored in the system configuration block of flash memory. The information they contain is written at the time of delivery and is guaranteed to be unique to any of microcontrollers under any circumstances and can be read by user applications or external devices through the CPU or JTAG/SWD interface and cannot be modified.

The 96-bit UID is usually used as a serial number or password. When writing flash memory, this unique identifier is combined with software encryption and decryption algorithm to further improve the security of code in flash memory. It can also be used to activate Secure Bootloader with security functions.

UCID is 128-bit, which complies with the definition of national technology chip serial number. It contains the information related to chip production and version.

5.30 Serial Single-wire JTAG Debug Port (SWJ-DP)

Embedded ARM SWJ-DP interface, which is a combination of JTAG and serial single-wire debugging interface, can achieve serial single-line debugging interface or JTAG interface connection. The JTMS and JTCK signals of JTAG share pins with SWDIO and SWCLK respectively, and a special signal sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

6 Order Information

Туре	Description	Package	Packet Option	Operation Condition	MOQ
CMT2391F128- EQR ^[1]	CMT2391F128, low power consumption Sub-1GHz RF transceiver SoC	QFN 68 (7x7)	Make up with disk	1.8 to 3.6 V, - 40 to 85℃	3,000
Remark: [1]. "E" represents the extended industrial product grade, with supported temperature range from - 40 to +85 °C. "Q" represents package type of QFN 68. "R" represents the tape and tray type with MOQ as 3,000.					

Table 6-1. CMT2391F128 Order Information

For more information, please refer to official website: www.hoperf.com

For purchasing or pricing requirements, please contact <u>sales@hoperf.com</u> or your local sales representatives

Package Outline 7

Package information of CMT2391F128 is shown as followed.

		-	
Symbol	Size (mm)		
	Min.	Тур.	Max.
А	0.65	0.75	0.85
A1		0.02	0.05
A3	0.18	0.203	0.25
b	0.10	0.15	0.20
D	6.90	7.00	7.10
E	6.90	7.00	7.10
e		0.35	
D2	5.39	5.49	5.59
E2	5.39	5.49	5.59

20 Deekene Size

L		0.40	
к	0.20		

8 Silk Printing Information

Figure 8-1. CMT2391F128 Top Mark

Table 8-1. CMT2391F128 Top Mark Description

Printing method	Laser
Pin 1 marking	Circle diameter = 0.3 mm
Font size	0.5 mm, right alignment
First line silk printing	2391F128, Representative model CMT2391F128
Second line silk printing	E912 Internal tracking code
Third line silk	Date code, assigned by packaging plant, Y represents the last digit of the year and WW
printing	represents the working week

9 Revise History

Table 10-1. Revise History

Version	Chapter	Modify	Date
0.1	All	Initial	2023-04-07
0.2	1.4	Change the Unit of Co-channel rejection, Adjacent channel rejection, Blocking, Image Rejection from dBc to dB.	2023-05-23
0.3	3	Update the diagram and content	2023-06-19

10 Contacts

Shenzhen Hope Microelectronics Co., Ltd.

Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Tel:	+86-755-82973805 / 4001-189-180
Fax:	+86-755-82973550
Post Code:	518052
Sales:	sales@hoperf.com
Website:	www.hoperf.com

Copyright. Shenzhen Hope Co., Ltd. All rights are reserved.

The information furnished by HOPERF is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of HOPERF and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of HOPERF. HOPERF products are not authorized for use as critical components in life support devices or systems without express written approval of HOPERF. The HOPERF logo is a registered trademark of Shenzhen Hope Microelectronics Co., Ltd. All other names are the property of their respective owners.